

Special tools for customer applications

HOLLFELDER-GÜHRING CUTTING TOOLS

Your competent partner in the area of metal chip removal

At our two company locations in Nuremberg und Zorbau (Germany) we design and manufacture precision tooling for highest quality demands on state-of-the-art CNC-turning / milling / grinding and EDM machines.

All activities in our enterprise are based on our corporate quality and environmental policy and aim to contribute to a permanent increase in our customers productivity while observing all applicable legal and governmental regulations.

Additionally we strive to achieve a leading position in our sector with our products and services and to continuously improve this position by means of a high level of quality as well as an adequate environmental policy.

All processes in our enterprise are mainly based on our customers demands and are always supervised by the management team and adapted to the changing general conditions by continuous improvement processes (CIP). In order to achieve our targets we maintain a certificated quality and environmental system according to DIN EN ISO 9001 : 2008 and DIN EN ISO 14001 : 2004.

The perfect composition of highly qualified staff and most modern production methods constitutes the basis for fully developed products on a high quality standard.

The easy handling and the adjustability of our milling cutters are the basis for savings in the area of tool presetting as well as for achieving tight tolerances.

Our standard program constitutes the basis for a huge number of innovative special tooling solutions which get used and appreciated at our customers globally. In many cases it is the customers specific solution which opens up the full potential of our tooling systems and thus contributes to savings and increases in productivity.

We would be happy to advise you in selecting the right tooling solution for your specific application and to stay on your side as your competent partner from the start of process planning until the effective use of our tools.

> Challenge us with your requirements! precise | flexible| innovative We always appreciate your confidence in us.

Headquarters Nuremberg

Location Zorbau

A reliable partner

HOLLFELDER-GÜHRING CUTTING TOOLS

has achieved a leading position as a reliable partner in the metal cutting industry. Innovative tooling solutions in standard tools as well as in tools made to customers specifications constitute the basis for cost optimised production.

Competence

Individual solutions for complex machining problems, tailor-made to the individual requirements are part of the self-image of our technicians and engineers. With a high qualification and an innovative thinking combined with a lot of experience, we design and manufacture in close contact with our customers tooling systems of highest precision for the µm-accurate machining of complex contours.

Profitability

HOLLFELDER-GÜHRING CUTTING TOOLS offers profitable solutions. The easy adjustment of our tools reduces non-productive times. We achieve a reduction in machining times due to our intelligent combined tools, the high number of effective teeth and the selection of the optimal cutting grade. The advantages are the utmost flexibility, productivity and certainty in process.

Our service

Depending on the technical requirements we analyse the machining processes and suggest tooling solutions which satisfy the high demands of our customers. With the proven tooling solutions of HOLLFELDER-GÜHRING CUTTING TOOLS our customers use highly precise and reliable systems which have achieved an excellent reputation worldwide.

Our service spectrum includes among others:

- In-house machining tests
- Application training also on-site at the customer's premises
- Complete CAD-layouts according to customer specifications
- Technical support

Our targets...

...are to steadily increase the efficiency of our precision tools as well as their operational possibilities. Thus our customers are leading obtain a competitive advantage due to the more efficient production with a high certainty in process.

For further information visit our website www.hollfelder-guehring.de

G Adjustment systems

Adjustment systems for our tools

Customer specific tools for machining the workpieces mentioned below:

1 Cylinder head

Pre- and finish-machining, fire face, bearing passage, bearing width, axial grooving, spring seat, spark plug bore, relief bore, induction port

24 Cylinder crankcase

Pre- and finish-machining, bearing width, sealing surface, ventilation bore, connecting bore, balance shaft bore, bearing cap, crankshaft bore, cylinder bore, cylinder liner, clearance cut for the honing tool, crankshaft bearing passage

46

Gearbox components

Valve body, gearbox case, pre-machining, shoulder machining, connecting shank, bearing seats, valve plate

Electric motor

Stator bore

Contents

60 Pumps

Oil pump, injection pump, stainless steel pump

Further components for automotive industry 74

Starter housing, camshaft, crankshaft, frame, gearshift fork, axle carrier, steering housing, drive flange, balance shaft housing, brake caliper, control housing, gearbox case, balance shafte, connecting rod

Components of general engineering

Power tools, hydraulic industry, wind power industry, end machining, compressor construction industry

108 Turbocharger housing

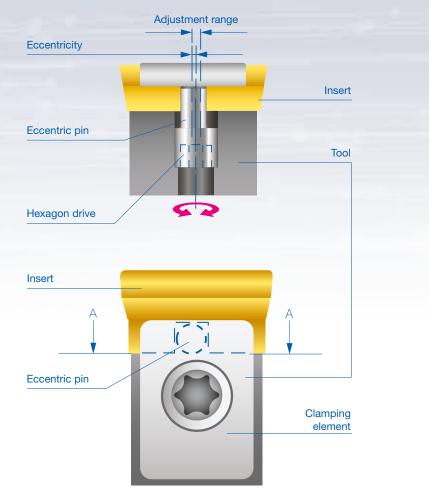
Pre- and finish-machining, V-band

118 Aviation technology

Fuel manifold, aircraft components

Turning

Camshaft regulator, case, profil shaft, bearing bracket, shaft


H Adjustment systems

Eccentric pin adjustment

The adjustment systems in the tools constitute the basis for highly precise production results in the most different materials. They are the basis for innovative tooling designs which contribute enormously to the productivity of our customers. The application is simple and saves time.

- Eccentric pin for µm-accurate adjustment
- Many design options thanks to open construction
- Design of the clamping system doesn't require any support on the side of the pocket seat
- Triangular machining is possible
- Insert can be adjusted in 2 directions

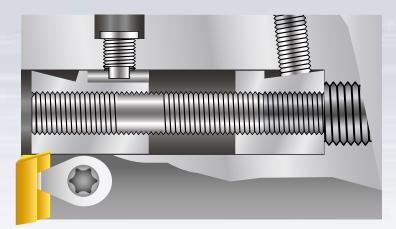
Adjustment key (hex key) to operate the eccentric pin

Adjustment systems

Radial screw adjustment and adjustment with tapered screw

· Radial screw adjustment for µm-accurate diameter adjustment • Large range of adjustment → up to 2 mm in diameter um · Easy handling thanks to robust design Large chip flute Adjustment element (pushing screw) Adjustable **** Set screw up to 2 mm Thrust transmitting piece Central position of the insert • µm-accurate diameter adjustment with tapered screw • Adjustment possible from the front and from the top μm • Can be flexibly combined and used μm Adjustment element (tapered screw / torx or hexagon socket) 0,02 Shank Ø µm-accurate adjustable Adjustment from the front Adjustment from the top

H Adjustment systems


Micro-adjustment

The micro-adjustment can be considered as the logical next step in the development of the tapered screw adjustment from the front. A built-in adjustment cartridge in the holder enables the user to achieve an extremely precise adjustment of the machining measures

- Adjustment element can be integrated even for small bore diameters
- Advantageous adjustment relation \rightarrow 1 revolution \triangleq 0,2 mm in Ø
- \bullet µm-accurate adjustment directly in the machining center
- Low machine downtime

Adjustment systems

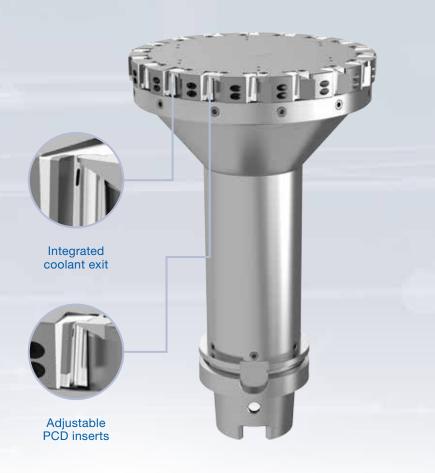
SMART SETTING MOTION TOOLS adjustment

within seconds

- Individual fine adjustment of all finishing inserts.
- One graduation line equals 0.002 mm in diameter • Diameter adjustment in both directions, plus and minus
- No special equipment required for pre-setting (i.e. magnetic V-gauges)
- Cartridges available with eccentric adjustment, also available with standard ISO insert
- Option: retraction of the inserts via drawbar
 → no workpiece adjustment required
- Option: mechanical operation, using either compressed air or machine coolant
- Time saving of more than 90% per setting cycle

Different adjustment screws

Central adjustment


- Simple pre-setting without special equipment
- Cartridges available with eccentric adjustment, also available with standard ISO insert
- Diameter adjustment in both directions, plus and minus via central adjustment screw
- Automatic readjustment if required. One rotation equals 0.03 mm on radius
- Retracting of the finishing cartridge by means of compressed air
- Expanding of the finishing cartridge inside the honing undercut

Cylinder head

Pre-machining

HPC rough milling cutter Ø 163 / L = 232 mm / HSK80-A / Teeth = 18

Requirementss		
Reduction of cycle time	S	
Solution		
HPC rough milling cutte	er Ø163 / L = 2	232 mm / HSK80-A / Teeth = 18
Cutting data		
Material		(DIN) ■ AISi10Mg(Cu) heat-treated
Cutting grade		PCD 30
Cutting speed	m/min	3,000
Feed rate per tooth	mm	0.14
Cutting depth	mm	-6
Result		
50% faster than compe	titors	
Longer tool life		
Lower power consumpt	tion	

Customer benefits

Reduced tooling costs per component Almost chip-free components, lower cleaning costs Increased productivity and energy efficiency

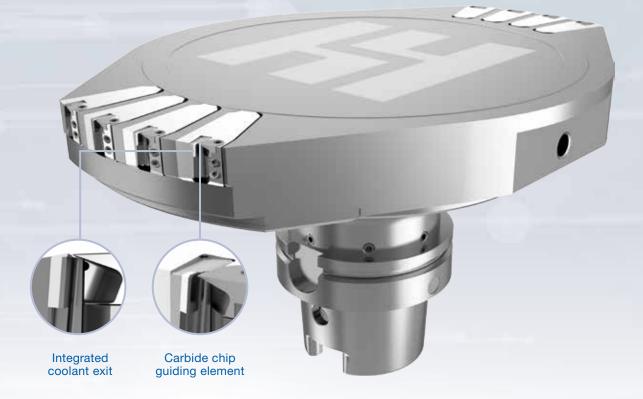
H Cylinder head

HPC milling cutter with closed chip flutes / Ø250 reduced weight

Teeth = 21 + 3 mixure of inserts / Use of wiper inserts

Requirements		
Chip-free components		
Solution		
HPC milling cutter with	closed chip fl	utes
Cutting data		
Material		(DIN) ■ AISi10Mg(Cu) heat-treated
Cutting grade		PCD 30
Cutting speed	m/min	3,500
Feed rate per tooth	mm	0.12
Cutting depth	mm	0.5
Result		
50% faster than compe	titors	
Longer tool life		
Higher surface finish qu	ality	

Customer benefits


Reduced tooling costs per component Almost chip-free components, lower cleaning costs Increased productivity and energy efficiency

Fire face

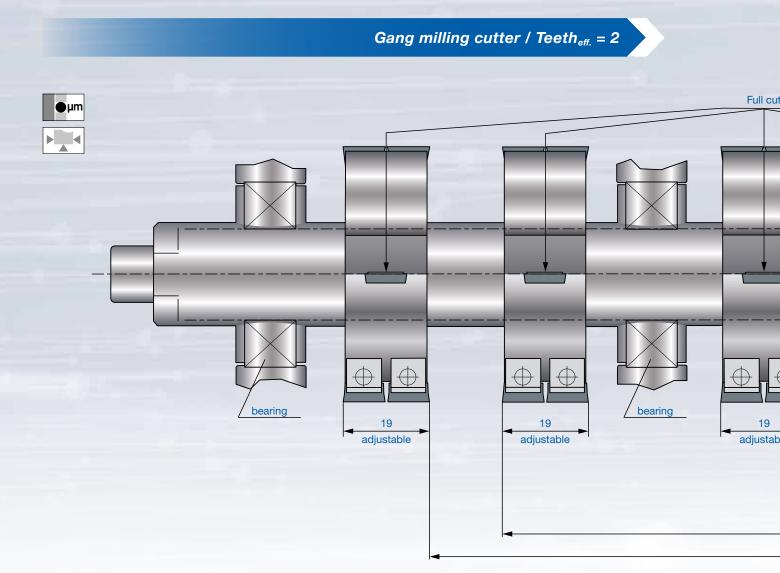
HPC bar cutter Ø315 with HSK-A100 / Teeth = 4 + 4 / Teeth_{eff.} = 8

Radially adjustable cartridge → Compensation unequal flute spacing

Requirements

Combustion chamber m	nilling, required	d cutter diameter 315 mm
R _z 6.3 - R _{max} 7 - Wt3 - PN	⁄lr → 65 %	
Critical capability index	Cmk 2.74	
Maximum permissible to	ool diameter 2	250 mm
Solution		
HPC bar cutter Ø315 w	ith HSK-A100) / Teeth = 4 + 4 / Teeth _{eff.} = 8
Cutting data		
Material		(DIN) ■ GD-AlSi9Cu3
Cutting grade		PCD
Cutting speed	m/min	2,177
Feed rate per tooth	mm	0.13
Cutting depth	mm	0.28
Result		
Uniform surface		

R_z1,4 - R_{max}1,67 - Wt1,28 - PMr100 %



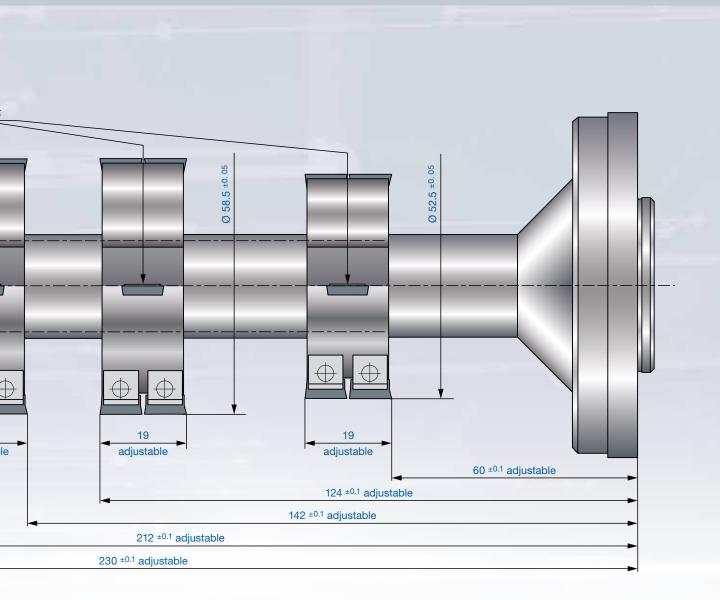
Customer benefits

High-precision machining can be carried out on a standard machining center (no special machine required) Almost chip-free components, lower cleaning costs

Bearing passage

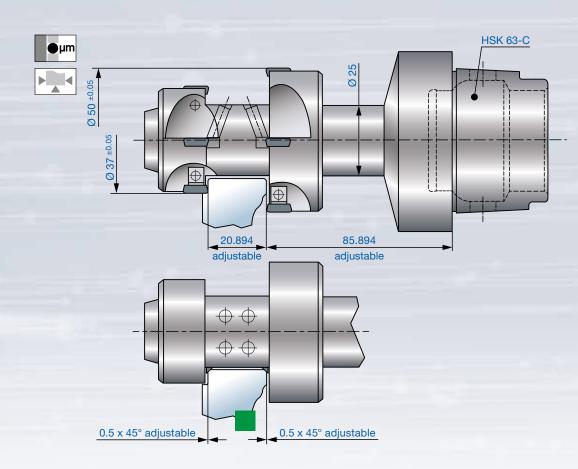
Requirements

Clearance milling, face	run-out and m	illing cutters are adjustable towards each other
Solution		
Gang milling cutter/Tee	theff. = 2	
Cutting data		
Material		(DIN) ■ G-AISi9Cu
Cutting grade		PCD
Cutting speed	m/min	220
Feed rate per tooth	mm	0.07
Cutting depth	mm	0.7-0.8
Result		
PCD inserts regrindable	and renewab	le
Narrow tolerances of be	earing spacing	is achievable
Minimal effort for insert	change	



Customer benefits

Reduced tooling costs per component Low non-productive times

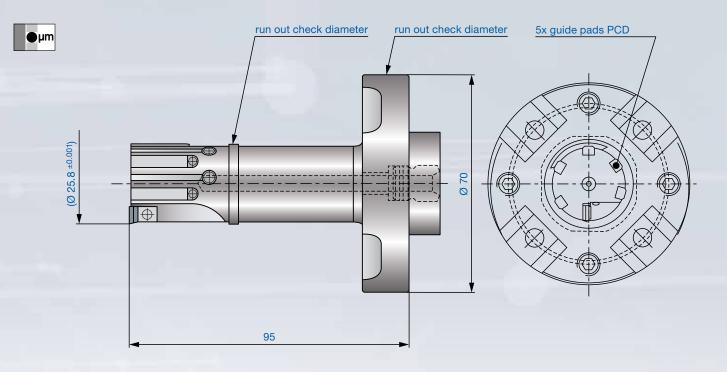

Bearing passage

Bearing width

Gang milling cutter / Teeth = 2 x 4

Requirements

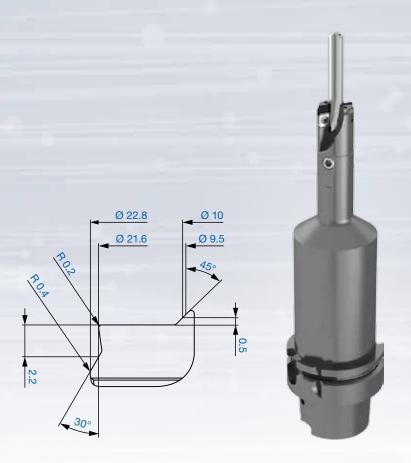
nequiremento			
Gang milling cutter for r	milling the bea	aring width with chamfering	
Bearing width and char	nfer sizes µm-	-accurate adjustable	
Solution			
Gang milling cutter / Te	eth = 2 x 4		
Cutting data			
Material		(DIN) ■ GKAISi7Mg	
Cutting grade		PCD	
Cutting speed	m/min	1,200	
Feed rate per tooth	mm	0.1	
Cutting depth	mm	2.5	
Result			
PCD inserts regrindable	e and renewab	ble	
Narrow tolerances of be	earing spacing	gs achievable	
Minimal effort for insert	change		
Reduced machining tim	ne thanks to co	ombination tool	


Customer benefits

Reduced tooling costs per component Low non-productive times

Axial grooving

Requirements			
Fine machining with PC	D guide pads		
Solution			
Reaming tool / Teeth =	1		
Cutting data			
Material		(DIN) ■ AI	
Cutting grade		PCD	
Cutting speed	m/min	800	
Feed rate per tooth	mm	0.1	
Cutting depth	mm	0.3	
Result			
Narrow form and position	on tolerances	are maintained	
Surface finish quality Ra	, 0.5		


Customer benefits

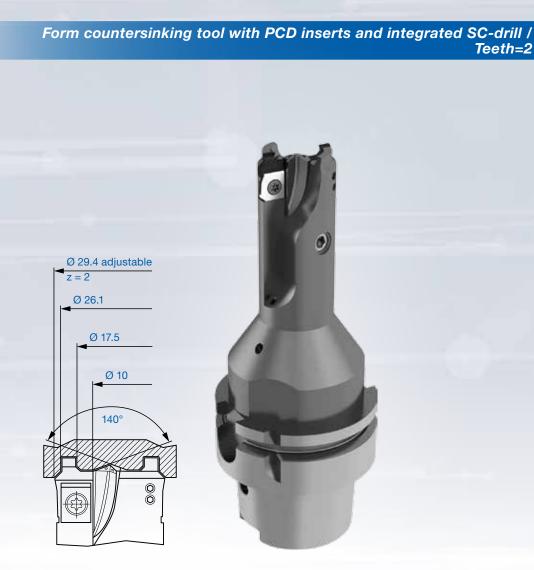
Higher process reliability Easy adjustment of the inserts

Drilling and countersinking tool / Teeth = 2

Profile inserts adjustable and separately replaceable

Requirements	
--------------	--

Complete machining of	the hole inclu	iding the spring support
Solution		
Drilling and countersink	ing tool / Teet	h = 2
Profile inserts adjustable	e and separate	ely replaceable
Cutting data		
Material		(DIN) ■ AlSi10Mg(Cu)
Cutting grade		PCD 10
Cutting speed	m/min	590
Feed rate per tooth	mm	0.075
Result		
Tool life 85,000 drilled h	oles	
SC-drill regrindable sev	eral times	



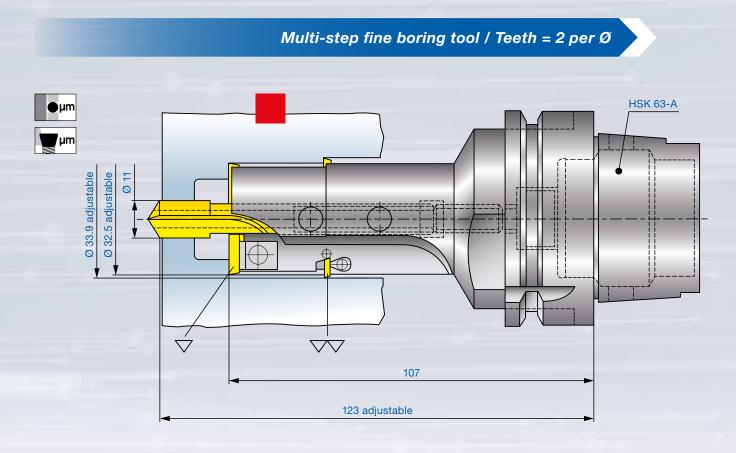
Customer benefits

Lower tool costs per part compared to brazed tools

Spring seat

Requirements

rioquii officilito		
Machining of the compl	lete workpiece	e contour with one tool
Solution		
Form countersinking too	ol with PCD in	serts and integrated SC-drill / Teeth=2
Cutting data		
Material		(DIN) ■ AISi9Cu
Cutting grade		PCD
Cutting speed	m/min	850
Feed rate per tooth	mm	0.15
Cutting depth	mm	4.3
Result		
High tool life (>70,000 c	drilled holes) w	ith simultaneous compliance of
toloropood and ourfood	roquiromonto	


tolerances and surface requirements

Customer benefits

Short processing time Lower costs per workpiece

Requirements		
Drilling and fine boring of	of the spring s	ieat
Drill length adjustable, f	ine boring dia	meters adjustable
Solution		
Multi-step fine boring to	ool / Teeth = 2	per Ø
Cutting data		
Material		(DIN) ■ GG25
Cutting grade		carbide coated
Cutting speed	m/min	(Ø11) 88/(Ø33.9) 258
Feed rate per tooth	mm	0.07
Cutting depth	mm	-5
Result		
SC-drill regrindable sev	eral times	
Incorto adjustable and a		

Inserts adjustable and separately replaceable

Customer benefits

Reduced tooling costs per component compared to solid carbide tools

 Multi-step fine boring tool / Teeth_{eft} = 1

 Image: state sta

Req	uirem	ents

nequirements			
Pre-machining, form ins	serts for specia	al profile	
All inserts adjustable			
Solution			
Multi-step fine boring to	ool / Teeth _{eff.} =	1	
Cutting data			
Material		(DIN) ■ GG-Cr	
Cutting grade		carbide coated	
Cutting speed	m/min	220	
Feed rate per tooth	mm	0.07	
Cutting depth	mm	0.2-0.8	
Result			

Inserts adjustable and separately replaceable

Customer benefits

Reduced tooling costs per component compared to solid carbide tools

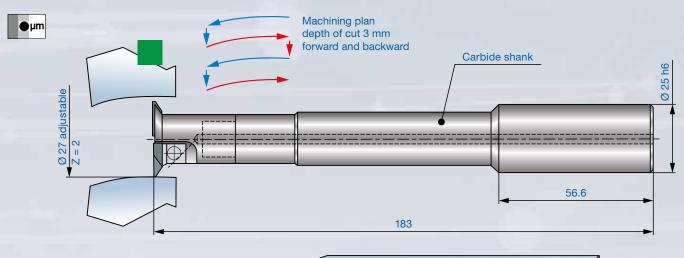
Broaching tool / Teeth = 1

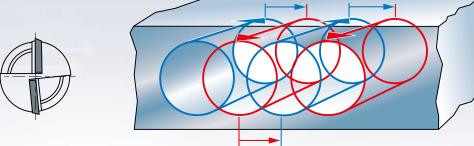
Requirements

nequirements			
Reduction of tool cos	sts and machinin	g time	
Elimination of expense	sive special millir	ng cutters	
Solution			
Broaching tool / Teetl	h = 1		
Cutting data			
Material		(DIN) ■ AlSi10Mg(Cu)	
Cutting grade		PCD	
Cutting speed	m/min	25	
Cutting depth	mm	0.5 per stroke	
Result			
Long tool life thanks	to constant cut		
Low tooling costs			
Significant reduction	in machining tim	10	

Ð

Customer benefits


Lower machine investment - no expensive milling spindle (high-speed) Reduced tooling costs per component



Induction port

Induction port milling tool / Teeth = 2

PCD inserts adjustable and replaceable

Requirements		
Complete machining of	the in-and ou	tlet ducts
Solution		
Induction port milling to	ol / Teeth $= 2$	
PCD inserts adjustable	and replaceat	le
Cutting data		
Material		(DIN) ■ AISi10
Cutting grade		PCD 10
Cutting speed	m/min	1,357
Feed rate per tooth	mm	0.35
Cutting depth	mm	3 forward and backward
Result		
High feed rates		
Consistent surface finis	h	

onsistent surface finish

Customer benefits

Lower tool costs thanks to interchangeable inserts

Cylinder crankcase

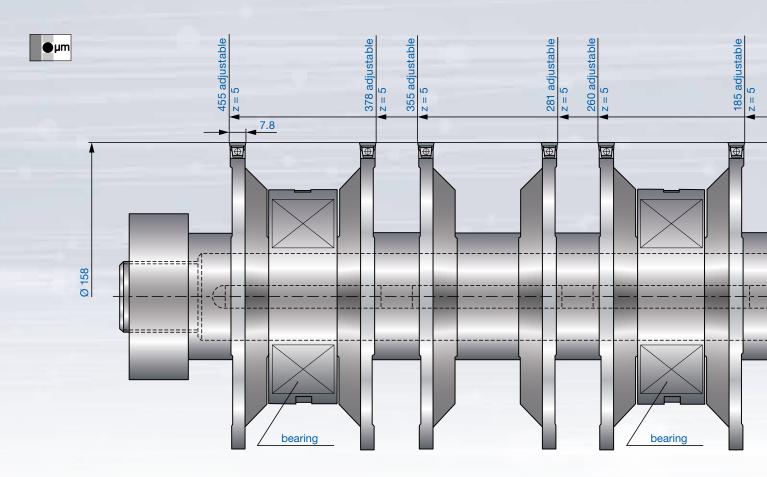
Cylinder crankcase

Pre-machining

HPC rough milling cutter / Teeth = 15 / up to 8 mm cutting depth

Requirements		
Increase tool life		
Minimization of edge br	eakouts on th	le component
Solution		
HPC rough milling cutte	er / Teeth = 15	
Cutting data		
Material		(DIN) ■ AlSi17Cu4 T5/T6
Cutting grade		PCD 30
Cutting speed	m/min	685
Feed rate per tooth	mm	0.14
Cutting depth	mm	~1.5
Result		
Tool life improvement by	y factor 4 to 5	
Lower power consumpt	ion	
No edge breakouts on t	he componen	ıt

Customer benefits


Reduced tooling costs per component Almost chip-free components, lower cleaning costs Increased productivity and energy efficiency

H Cylinder crankcase

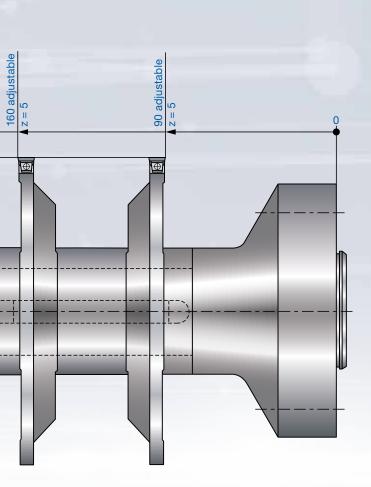
Bearing width

Gang milling cutter / Teeth = 5 per milling cutter

Face run-out and milling cutters adjustable to each other

Requirements

noquironnon			
Milling of the bearing wi	dth		
Face run-out and milling	g cutters adjus	table to each other	
Solution			
Gang milling cutter / Tee	eth = 5 per mi	ing cutter	
Cutting data			
Material		(DIN) ■ GD-AISi9	
Cutting grade		PCD/K10	
Cutting speed	m/min	500	
Feed rate per tooth	mm	0.07	
Cutting depth	mm	-5	
Result			
Quick and easy changin	ng of the inser	S	
Excellent surface finish			
PCD inserts usable on b	ooth sides		

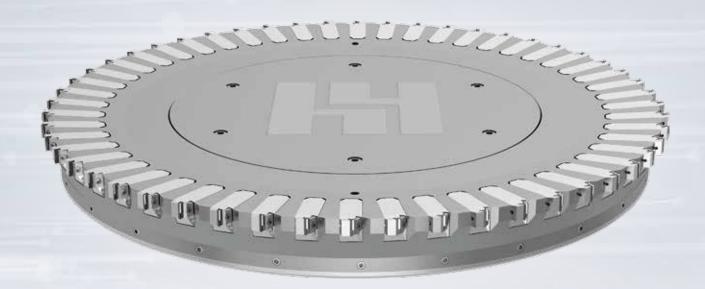


Customer benefits

Reduced non-productive times Half of the costs thanks to double-used PCD inserts

Cylinder crankcase

Bearing width



H Cylinder crankcase

Sealing surface

Face milling cutter / Ø 500 mm / Teeth = 52

Cartridge solution

Requirements			
Milling of the sealing su	rface, Alumini	ım crankcase	
All inserts adjustable			
Solution			
Face milling cutter / Tee	eth = 52		
Cartridge solution			
Cutting data			
Material		(DIN) ■ GD-AISi9	
Cutting grade		PCD	
Cutting speed	m/min	3,000	
Feed rate per tooth	mm	0.1	
Cutting depth	mm	0.5	
Result			
Outstanding tool life			
Easy adjustment of the	inserts		

Easy adjustment of the inserts

Customer benefits

Low costs per component Reduced non-productive times

Cylinder crankcase

Milling thrust bearing seat

Milling cutter with vibration damper / Teeth = 16 / Teeth_{eff.} = 8

Requirements		
Milling the bearing clear	rances for the	crankshaft
Solution		
Milling cutter with vibrat	tion damper /	Teeth = 16 / Teeth _{eff.} = 8
Cutting data		
Material		(DIN) ■ AISi9Cu3
Cutting grade		PCD
Cutting speed	m/min	516
Feed rate per tooth	mm	0.08
Cutting depth	mm	1.5-8
Result		

Absolutely vibration-free and high quality surface finish

Customer benefits

High tool life of PCD inserts thanks to smoth cutting performance

H Cylinder crankcase

Milling thrust bearing seat

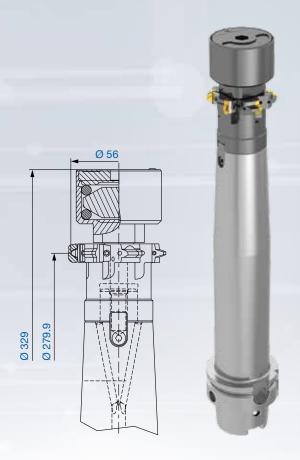
Milling cutter with integrated vibration damper / Teeth = 16 (8 + 8)

Requirements

Maximum number of cu	utting edges, v	ibration damped for high surface quality
Solution		
Milling cutter / Teeth = 1	16 (8 + 8)	
Cutting data		
Material		(DIN) ■ AISi12
Insert		PCD
Cutting speed	m/min	650
Feed rate per tooth	mm	0.1
Pocult		

Result

Stable milling operation, surfaces free of vibrations


Customer benefits

Cycle time reduction thanks to high number of cutting edges Excellent surface finish

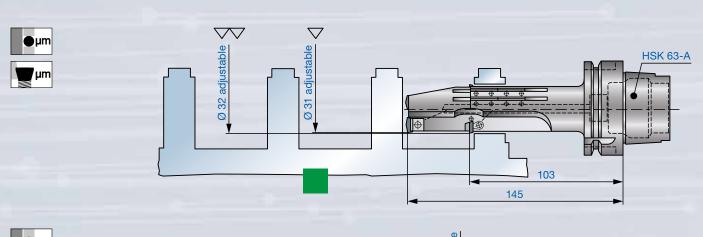
Cylinder crankcase

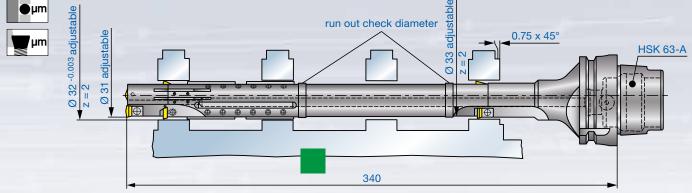
Profile milling

Milling cutter with vibration damper / Teeth_{eff.} = 3

Requirements		
Milling a slot in the bear	ring diameter	
Extreme protrusion leng	gth	
Solution		
Milling cutter with vibrat	tion damper /	$Teeth_{eff.} = 3$
Cutting data		
Material		(DIN) 🗖 GG25
Cutting grade		carbide coated
Cutting speed	m/min	345
Feed rate per tooth	mm	0.03
Cutting depth	mm	3.5
Result		

Smooth cutting performance and good surface quality thanks to the use of a vibration damper




Customer benefits High quality components

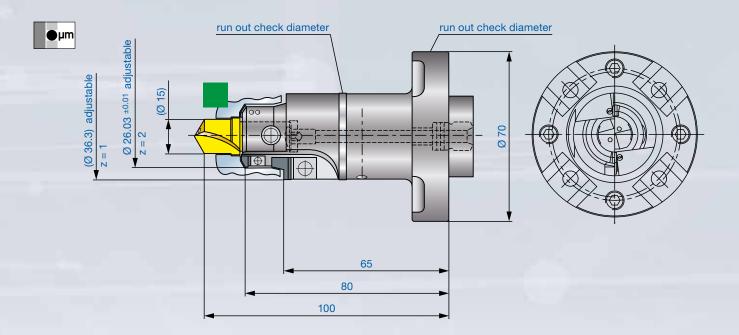
H Cylinder crankcase

Ventilation bore

Drilling and fine boring tool / Teeth (drilling) = Teeth_{eff.} = 1 / (counterboring) = 2

Requirements		
Pilot tool with guide pac	ls (drilling into	solid - 1. web)
Finish tool with guide pa	ads (drilling int	to solid)
Solution		
Drilling and fine boring t	ool / Teeth (dr	illing) = Teeth _{eff.} = $1 / (counterboring) = 2$
Cutting data		
Material		(DIN) ■ GK-AISi17Cu4Mg
Cutting grade		K10/PCD
Cutting speed	m/min	320
Feed rate per tooth	mm	0.07
Cutting depth	mm	into solid/0.5
Result		
Longer tool life		

onger tool life


Customer benefits

Process reliable production processes

Cylinder crankcase

Connecting bore

Drilling and fine boring tool / Teeth = 2 + 2 + 1

Requirements

Combination tool with s	olid carbide c	Irill for boring and		
adjustable inserts for fir	ne boring and	chamfering		
Solution				
Drilling and fine boring t	tool / Teeth = :	2 + 2 + 1		
Cutting data				
Material		(DIN) 🔳 AI		
Cutting grade		PCD		
		drilling	fine boring	
Cutting speed	m/min	193	470	
Feed rate per tooth	mm	0.3	0.12	
Cutting depth	mm	into solid	5.5	
Result				
Conventional solid carb	ide drill. rearin	ndable several tim	25	

Conventional solid carbide drill, regrindable several times Insert diameter µm-accurate adjustable

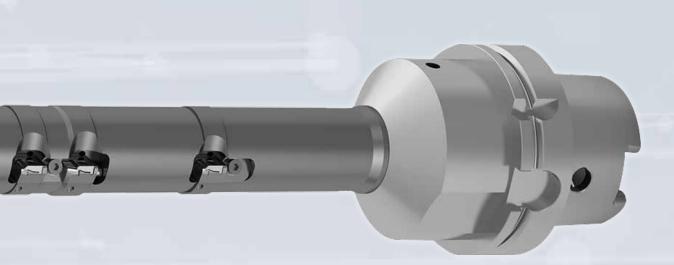
Customer benefits Cost-efficient solution

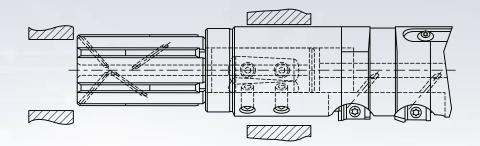
Balance shaft bore

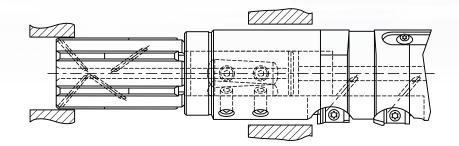
Line boring with cartridges and PCD-equipped pilot

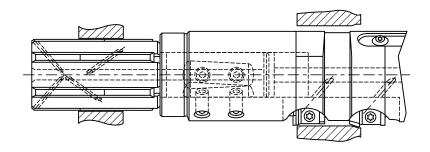
Heavy metal holder with carbide guide pads for stabilisation

Requirements

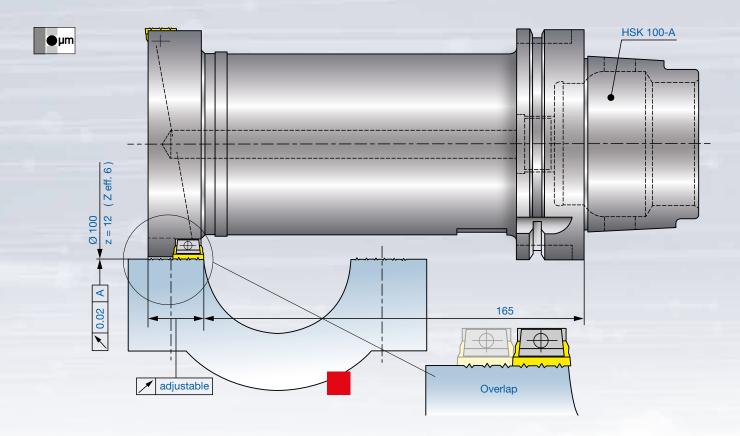

Semi-finish machining v	vith counter b	earing in the component
All inserts adjustable		
Solution		
Line boring with cartridg	ges and PCD-	equipped pilot
Heavy metal holder with	n carbide guid	e pads for stabilisation
Cutting data		
Material		(DIN) ■ AISi9Cu3
Cutting grade		PCD
Cutting speed	m/min	280
Feed rate per tooth	mm	0.12
Cutting depth	mm	0.5
Result		
High concentricity of be	aring diamete	rs
Simple tool handling		




Customer benefits High process reliability


Cylinder crankcase

Balance shaft bore



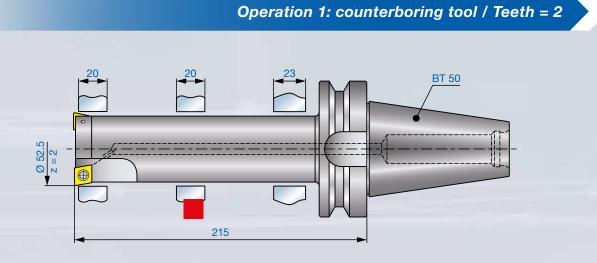
Bearing cap

Form milling cutter / Teeth = 2×6

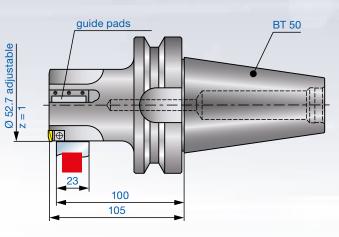
Transition of the insert profile adjustable

Requirements			
Form milling cutter for n	nachining bear	ing caps	
Solution			
Form milling cutter / Tee	$eth = 2 \times 6$		
Transition of the insert p	orofile adjustat	le	
Cutting data			
Material		(DIN) ■ GGG40	
Cutting grade		carbide coated	
Cutting speed	m/min	240	
Feed rate per tooth	mm	0.1	
Cutting depth	mm	1	
Result			

Low cutting forces thanks to cutting division



Customer benefits


Cost-effective interchangeable inserts solution

Cylinder crankcase

Crankshaft bore

Operation 2: fine boring tool / Teeth = 1

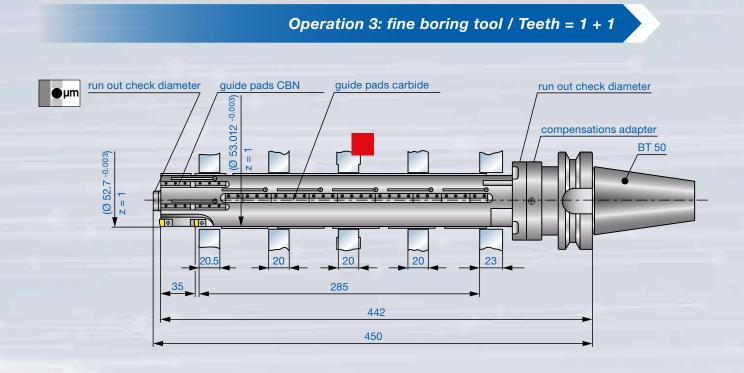
Requirements

●µm

noquironito				
Operation 1: pre-machin	ning from 2 si	des		
Operation 2: pilot bore				
Solution				
Operation 1: counterbor	ring tool / Tee	th = 2		
Operation 2: fine boring	tool / Teeth =	:1		
Cutting data Operation 1		Operation 1	Operation 2	
Material		(DIN) 🗖 GG		
Cutting grade		carbide coated		
Cutting speed	m/min	150	135	
Feed rate per tooth	mm	0.2	0.1	
Cutting depth	mm	2.5	0.1	
Result				
Simple tool handling that	anks to eccen	tric nin adjustment		

Simple tool handling thanks to eccentric pin adjustment

Guide pads easily replaceable



Customer benefits

Reduced non-productive times High quality components

H Cylinder crankcase

Crankshaft bore

Requirements			
Operation 3: finish-mac	hining		
Solution			
Operation 3: fine boring	tool / Teeth =	1+1	
Cutting data		Operation 3	
Material		(DIN) 🗖 GG	
Cutting grade		carbide coated	
Cutting speed	m/min	238	
Feed rate per tooth	mm	0.1	
Cutting depth	mm	0.1	
Result			
Simple tool handling that	anks to eccent	ric pin adjustment	
Guide pads easily repla	ceable		

Customer benefits

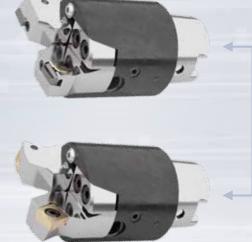
Reduced non-productive times High quality components

Cylinder crankcase

Cylinder bore

Boring tool with integrated vibration damper, adjustable cartridges and ISO indexable inserts / Teeth = 5

KV400 KKH axially adjustable


Requirements		
Roughing operation		
Ø 74±01		
Solution		
Boring tool with adjusta	ble cartridges	and ISO indexable inserts / Teeth = 5
Cutting data		
Material		(DIN) ■ GG25
Cutting grade		carbide coated
Cutting speed	m/min	150
Feed rate per tooth	mm	0.2
Cutting depth	mm	Ø1-1.5
Result		
Very good tool life		
Stable machining proce	SS	

Customer benefits Low costs per component H Cylinder crankcase

Cylinder bore

/ Boring system GA 200 Vario Teeth = 2 for roughing and finish-machining

Requirements			
Roughing operation			
Ø 72.5±0.2 R _z 100			
Solution			
GA 200 Vario / Teeth = 2			
Cutting data			
Material		(DIN) 🗖 GG	
Cutting grade		CBN	
Cutting speed	m/min	649	
Feed rate per tooth	mm	0.2	
Cutting depth	mm	Ø1.5-2	
Result			
Increased tool life			
Simple tool handling			

Customer benefit Low cost per component

Motor block

Milling of clearance cut for the honing tool

Tight cutting edge spacing

Various cutting materials can be used

With a stable core cross-section, this robust solution can achieve high feed rates

Requirements		
Circular milling a clearance	cut for the h	noning tool into the cylinder bore
Mixed machining Aluminium	n and Cast I	ron
Solution		
Circular milling cutter with fi	xed insert s	seat
Double positive cutting geor	metry	
Cutting data		
Material		■AlSi9/■GG25
Cutting grade		PCD/PROTON coated carbide
Cutting speed	m/min	242
Feed rate per tooth	mm	0.18
Cutting depth	mm	6-7
Result		

Short machining time with high cutting depth

Customer benefits

Solid solution → high feeds possible Inserts can be changed individually → lower costs per component Cylinder bore

Automatically adjustable tool / Teeth = 1

SMART SETTING MOTION TOOLS concept

Requirements		
Simple tool handling		
Solution		
Automatically adjustable	e tool / Teeth =	= 1
SMART SETTING MOT	ION TOOLS co	oncept
Cutting data		
Material		(DIN) 🗖 GG25
Cutting grade		CBN
Cutting speed	m/min	750
Feed rate per tooth	mm	0.28
Cutting depth	mm	0.3
Result		

Fully automatic diameter adjustment

Customer benefits

Increase in tool life quantity Very easy handling and very precise adjustment

Cylinder crankcase

Cylinder liner

Automatically adjustable tool / Teeth = 3 + 2

SMART SETTING MOTION TOOLS concept and control of the drawbar via compressed air

Requirements		
Reduction of processing	g costs	
Solution		
Automatically adjustable	e tool / Teeth =	= 3 + 2
SMART SETTING MOTI	ON TOOLS co	oncept
Control of the drawbar	via compresse	d air
Cutting data		
Material		(DIN) 🗖 GG
Cutting grade		CBN
Cutting speed	m/min	700
Feed rate per tooth	mm	0.18
Cutting depth	mm	0.3
Result		
Semi-finish and finishing	g machining ir	n one tool
No retraction marks that	nks to retracta	able inserts

Customer benefits High process reliability Simple tool handling

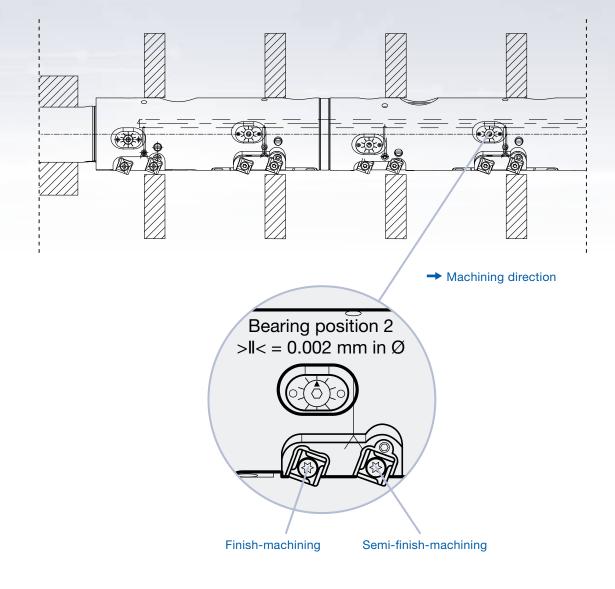
Crankshaft bearing passage

Line boring bar / Teeth = 5 + 5 / Teeth_{eff.} = 1 + 1

SMART SETTING MOTION TOOLS concept

Requirements Reduced non-productive time and cycle time Defined surface R_z12-20 Solution Line boring bar / Teeth = 5 + 5 / Teeth_{eff.} = 1 + 1SMART SETTING MOTION TOOLS concept **Cutting data** Material (DIN) GG25 Cutting grade solid carbide Cutting speed 185 m/min Feed rate per tooth 0.27/0.2 mm Cutting depth mm 0.5 Result Non-productive times for re-adjusting reduced from 20 minutes to 2 minutes

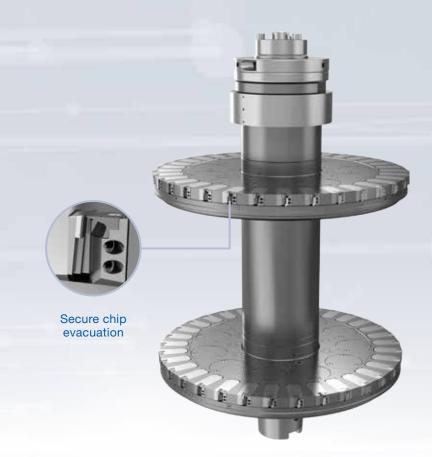
Simple handling


Customer benefits

High process reliability Dramatic reduction of non-productive time

Cylinder crankcase

Crankshaft bearing passage


Gearbox components

Gearbox components

Valve body

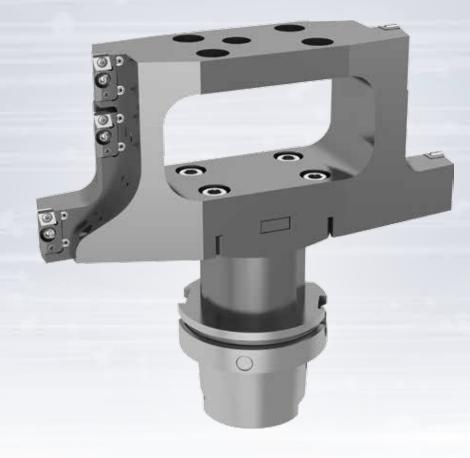
HPC gang milling cutter Ø380mm / Teeth = 2 x 33

Adjustable distance between milling cutters (Dimension 280 mm)

Requirements		
Machining of the sealing	g surface	
Chip free components		
Simultaneous machining	g of two comp	onents
Solution		
HPC gang milling cutter	[.] Ø380 mm / T	eeth = 2 x 33
Adjustable distance bet	ween milling c	cutters (Dimension 280 mm)
Cutting data		
Material		(DIN) ■ AISi7
Cutting grade		PCD
Cutting speed	m/min	780
Feed rate per tooth	mm	0.07
Cutting depth	mm	0.5
Result		
Excellent surface finish		
Very good tool life		

Customer benefits

Almost chip-free components, lower cleaning costs Reduced tooling costs per component


H Gearbox case

Pre-machining

Stepped countersinking tool Ø206mm + Ø209mm + Ø285mm / Teeth = 2 + 2 + 2

Basic tool body in steel and aluminium with cartridges

Requirements		
Minimization of tool we	ight and tool c	mensions
Solution		
Stepped countersinking	g tool / Teeth =	2 + 2
Basic tool body in steel	and aluminium	ו with cartridges
Cutting data		
Material		(DIN) ■ AIADC10
Cutting grade		PCD
Cutting speed	m/min	1,200
Feed rate per tooth	mm	0.12
Result		

Reduced tool weight

Customer benefits

Slim design saves space within the tool magazine of the machine Low costs thanks to standard cartridges and ISO inserts

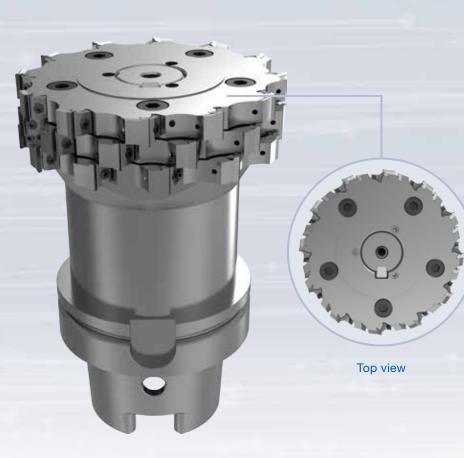
Pre-machining

Stepped countersinking tool Ø219mm + Ø220mm / Teeth = 2 + 4

Basic tool body in steel and aluminium with cartridges

Requirements		
Minimization of tool wei	ight and tool d	mensions
Solution		
Stepped countersinking	g tool / Teeth =	4 + 2
Basic tool body in steel	and aluminiur	ı with cartridges
Cutting data		
Material		(DIN) AIADC10
Cutting grade		PCD
Cutting speed	m/min	1,200
Feed rate per tooth	mm	0.1
Result		

Reduced tool weight


Customer benefits

Reduced machining times Low costs thanks to standard cartridges and ISO inserts

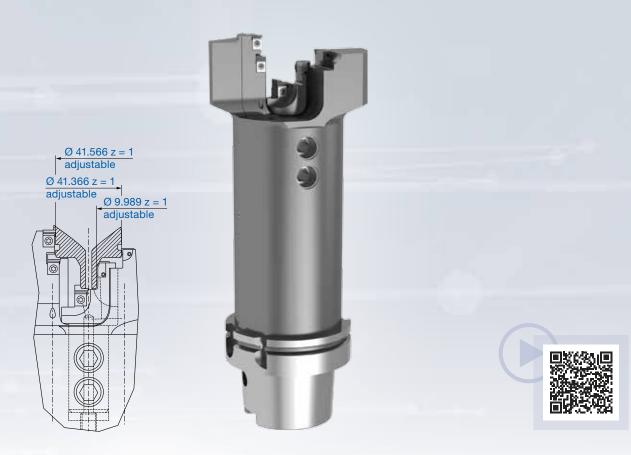
Shoulder machining

Multi tooth cutter Ø 125 / Teeth = 36 / Teeth_{eff.} = 12

face and shou	Ider surface	
h = 36 / Teeth,	_{ff.} = 12	
	(DIN) ■ AlSi9Cu3	
	PCD 10	
m/min	2,500	
mm	0.12	
mm	0.8	
	h = 36 / Teeth _e m/min mm	PCD 10 m/min 2,500 mm 0.12

Result

Almost uninterrupted shoulder thanks to high concentricity

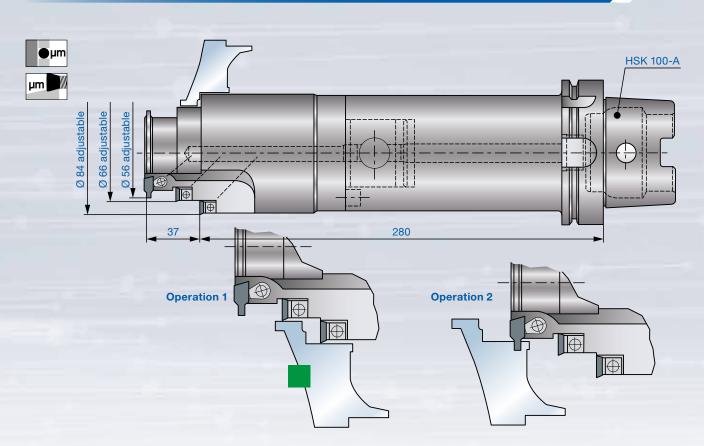

Customer benefits

Inserts separately replaceable Increased productivity and energy-efficiency

Machining of a connecting shank

Combination tool with adjustable inserts - eccentric pin adjustment / Teeth = 5 / Teeth_{eff} = 1

Requirements		
High concentricity requi	irements and o	concentricity of the individual diameters to each other
Adjustability of inserts		
Solution		
Combination tool with a	idjustable inse	rts - eccentric pin adjustment / Teeth = 5 / Teeth _{eff.} = 1
Cutting data		
Material		(DIN) ■ AISi9
Cutting grade		PCD
Cutting speed	m/min	1,380
Feed rate per tooth	mm	0.15
Result		
Easy readjustment of th	e inserts	


Customer benefits

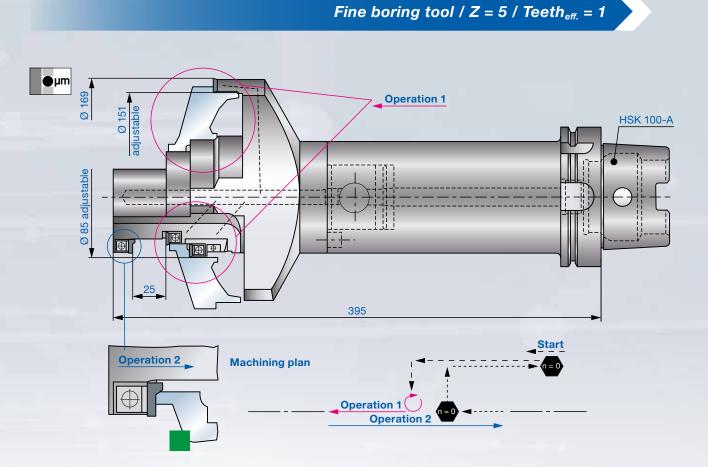
Reduced non-productive times Cost-effective interchangeable inserts solution

Bearing seats

Fine boring and circular milling tool / Teeth = 3 per Ø

Requirements				
Combination tool for fin	e boring and o	circular milling		
Solution				
Fine boring and circular	milling tool /	Teeth = 3 per Ø		
Cutting data				
Material		(DIN) 🔳 AISis		
Cutting grade		PCD		
		fine boring	milling	
Cutting speed	m/min	450	517	
Feed rate per tooth	mm	0.08	0.12	
Cutting depth	mm	-4	-4	
Result				
Incorte concretely replay	aaabla			

Inserts separately replaceable



Customer benefits

Reduced tooling costs per component

Bearing seats

Requirements

Combination tool for for	ward and bac	kward fine boring	
and for over turning of o	outside diamet	er	
Solution			
Fine boring tool / Teeth	= 5 / Teeth _{eff.} =	= 1	
Cutting data			
Material		(DIN) AISi9	
Cutting grade		PCD	
Cutting speed	m/min	(Ø85) 450	
Feed rate per tooth	mm	0.12	
Result			

Inserts separately replaceable

Customer benefits

Reduced machining times Reduced tooling costs per component H Gearbox case

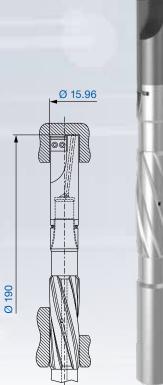
Valve plate

Face milling cutter Ø49mm with heavy metal shank (anti-vibration effect) / Teeth = 8

Requirements Axial plunging into the component, face miling of the surface through the clamping device $PMr(3) >\! 50\,\%$ - $R_z 8$ - $R_{max}\,10$ and axially adjustable **Solution** Face milling cutter with heavy metal shank (anti-vibration effect) / Teeth = 8 **Cutting data** Material (DIN) GD-AlSi9Cu3 Cutting grade PCD Cutting speed 2,700 m/min Feed rate per tooth 0.034 - 0.069 - 0.086 mm Cutting depth mm 0.6 Result Excellent surface finish PMr(3) 100 % - R_z2.2 - R_{max}2.6

Customer benefits

Very high tool life quantity Excellent surface finish quality


Gearshift housing

Fine boring tools

Fine machining tool with heavy metal shank and twisted guide shank / Teeth = 1

Requirements			
Precise diameter and hi	gh coaxiality		
Solution			
Fine machining tool with	n heavy metal	shank and twisted guide shank / Teeth = 1	
Cutting data			
Material		(DIN) ■ AI	
Cutting grade		PCD	
Cutting speed	m/min	449	
Feed rate per tooth	mm	0.056	
Cutting depth	mm	-8	
Result			
Excellent surface finish	quality		

Customer benefits Fewer tools required for machining

Electric motor

Pre-machining stator bore electric motor

Tangential inserts tool / Teeth = 4 + 4 + 4

External and internal diameter machining Ø218mm + Ø214 + Ø160mm

Basic tool body in steel and aluminium with cartridges

Requirements

Light-weight design

nequirements		
Strongly fluctuating allo	wances and n	nachining several steps reliably
Safety cut required for b	oottom surface	e over 28 mm width
Solution		
Light-weight stepped co	ountersinking	tool / Teeth = $4 + 4 + 4$
Tangential inserts with u	underhand grip	o installed in the cartridge, thus very stable embedding
Cutting data		
Material		■AlSi10MgCu-T6
Cutting grade		PCD
Cutting speed	m/min	600 m/min
Feed rate per tooth	mm	0.15
Result		
Process reliable machin	ing combined	with high feed rates
Long tool life thanks to	a stable tool	

Customer benefits

Roughing with only one tool Reduced cycle times

H Electric motor

Semi-finish machining stator bore

Adjustable pre-machining tool / Teeth = 4 + 4 + 2 + 2 + 2

Light-weight tool concept with cartridges and PCD guide pads

Exact premachining for	finishing tool	
Solution		
Adjustable ISO indexab	le inserts com	bined with different diameters
Light-weight construction	on with alumin	ium base body
Cutting data		
Material		■AlSi10MgCu-T6
Cutting grade		PCD
Cutting speed	m/min	820
Feed rate per tooth	mm	0.12
Result		

Stable machining process

Customer benefits

Pre-machining and finishing of several steps Low cycle time thanks to multi-teeth tool

Finish-machining stator bore

Multi-teeth fine boring tool / Teeth = 6 + 2 + 2 + 2

Light-weight tool concept with cartridges and PCD guide pads

Requirements		
Fitting Ø with high surface	ce quality and	I short cycle time
Solution		
6-fluted tool with mixture	e of inserts	
Light-weight constructio	n with alumin	ium base body
Cutting data		
Material		■AlSi10MgCu-T6
Cutting grade		PCD
Cutting speed	m/min	1,000
Feed rate per tooth	mm	0.18

Result

Light-weight design

Compliance with all tolerances and surface requirements

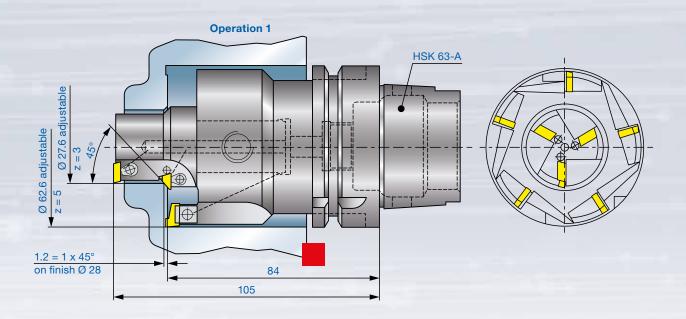
Customer benefits

Low cycle time thanks to a high feed rate Excellent surface finish quality

Multi-step fine boring tool / Teeth = 4 / Teeth_{eff.} = 1 65 adjustable ●µm ABS 50 μm Ø 41.35 ±0.05 adjustable Ø 10.5 adjustable ~~~;; 45 μm t Ø 31.35 adjustable \bigoplus \oplus Χ-Ø 35.55 +0.05 adjustable 82.5 Х 95.6 -R0,2 Ø 31.35 adjustable 10° 65 adjustable

Requirements				
Combination tool, all dia	ameters adjus	table		
Solution				
Multi-step fine boring to	ool / Teeth $= 4$	/ Teeth _{eff.} = 1		
Cutting data				
Material		(DIN) GGG40		
Cutting grade		carbide coated		
Cutting speed	m/min	(Ø41.35) 197		
Feed rate per tooth	mm	0.15		
Cutting depth	mm	-3		
Result				
Flexible tool design				
Inserts separately adjust	table			

Oil pump


Pump cavity

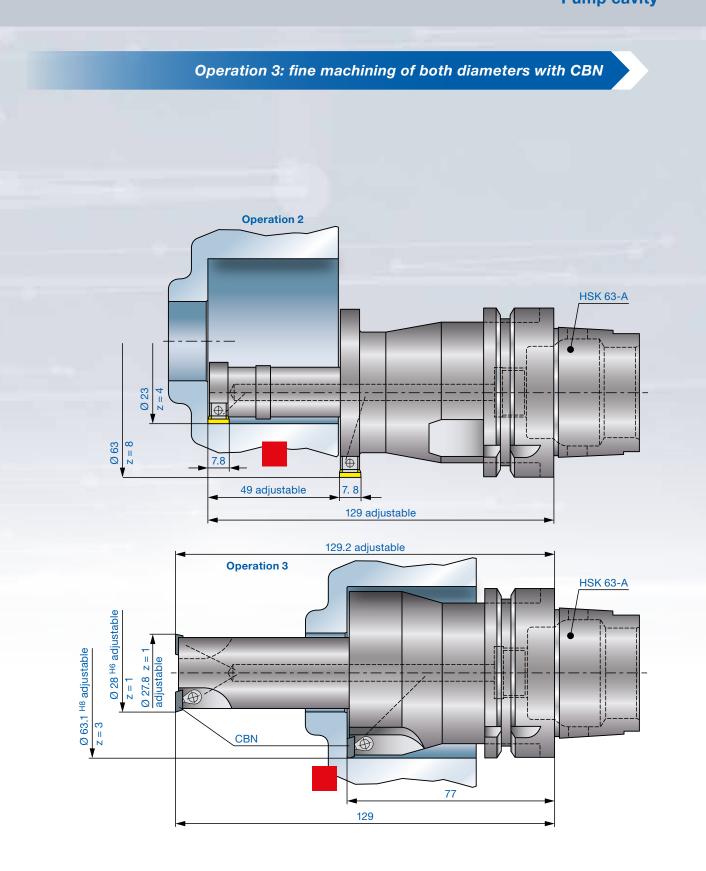
Operation 1: multi-step fine boring tool / Teeth = 3 + 5

Operation 2: step milling cutter / Teeth = 4 + 8

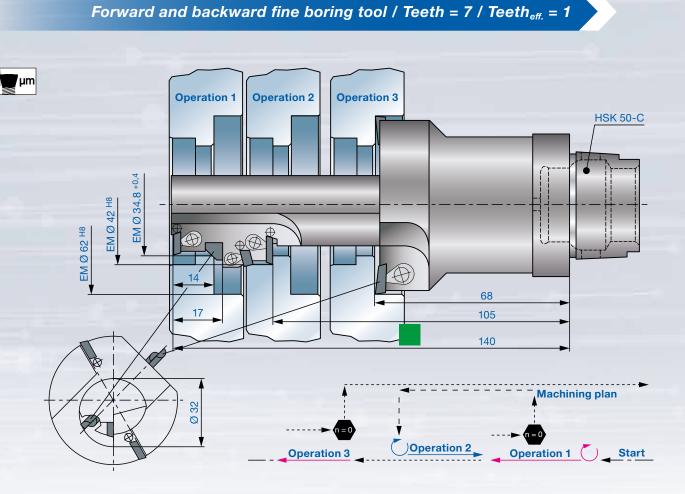
Operation 3: multi-step fine boring tool / Teeth = 1 + 1 / 3

Requirements

nequiencino				
Operation 1: fine boring	g tool for roug	h machining of the pump cavi	ty	
Operation 2: step millin	ig cutter for si	multaneous milling of the seal	ing surfaces,	
distance (dim. 49) µm-a	ccurate adjus	table		
Operation 3: fine mach	ining of both o	diameters with CBN		
Solution				
Operation 1: multi-step	fine boring to	pol / Teeth = $3 + 5$		
Operation 2: step millin	ng cutter / Tee	th = 4 + 8		
Operation 3: multi-step	fine boring to	ool / Teeth = 1 + 1 / 3		
Cutting data		Operation 1	Operation 2	Operation 3
Material		(DIN) 🗖 GG25		
Cutting grade		carbide coated	carbide coated	CBN
Cutting speed	m/min	(Ø27.6) 108 (Ø62.6) 242	(Ø23) 92 (Ø63) 250	240
Feed rate per tooth	mm	(Ø27.6) 0.15 (Ø 62.6) 0.09	(Ø 23) 0.12 (Ø 63) 0.06	0.1
Cutting depth	mm	-3	~ 2	0.2
Result				


Reduced machining time

Customer benefits


Low costs per component Higher process reliability

Oil pump H Pump cavity

63

H Oil pump

Requirements		
Combination tool for 6 r	machining ste	ps
All inserts adjustable		
Solution		
Forward and backward	fine boring too	ol / Teeth = 7 / Teeth _{eff.} = 1
Cutting data		
Material		(DIN) ■ AISi9
Cutting grade		PCD
Cutting speed	m/min	(Ø 62) 467
Feed rate per tooth	mm	0.12
Cutting depth	mm	0.5
Result		
Short processing time		

Inserts can be changed separately

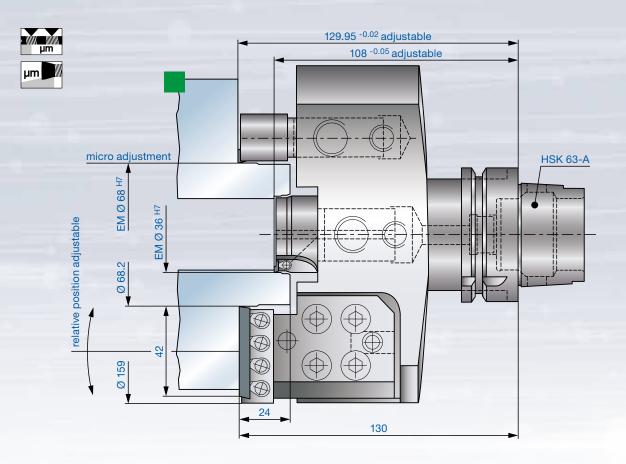
0

Customer benefits Low costs per component

Injection pump

Requirements		
Multi-step machining w	ith one tool	
Solution		
Multi-step fine boring to	ool / Teeth _{eff.} =	2
Cutting data		
Material		(DIN) ■ ENAC-AlSi12CuNiMg
Cutting grade		PCD 10
Cutting speed	m/min	1,500
Feed rate per tooth	mm	0.13
Result		
Short machining time		
Very good surface quali	ty and dimens	sional accuracy
Inserts can be changed	separately de	epending on wear

Custo Custo


Customer benefits

Cycle time reduction thanks to combination of several machining steps Low costs per component

Modular designed fine boring tool

Angular position of inserts for sealing surface adjustable

Requirements

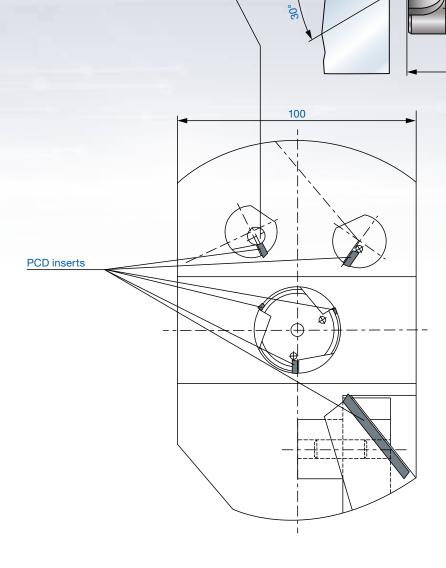
noquironito		
Combination tool for 6 m	nachining step	os, cartridges for different types of workpieces
Inserts adjustable in dian	neter	
Solution		
Modular designed fine be	oring tool	
Angular position of insert	ts for sealing	surface adjustable
Cutting data		
Material		(DIN) ■ GD-AISi12Cu
Cutting grade		PCD
Cutting speed	m/min	(Ø 68) 641
Feed rate per tooth	mm	0.12
Cutting depth	mm	-4
Result		

Flexible tool design for high requirements



Customer benefits High process reliability

Injection pump


Flange machining

122 -0.03 adjustable

1 revolution = 0.02 mm in Ø

allows the precise adjustment of the tool diameter directly in the machine without using any devices, this leads to a reduction of non-productive times in continuously running processes e.g. mass production of automotive components.

EM Ø 36,3 ±0,5

۲

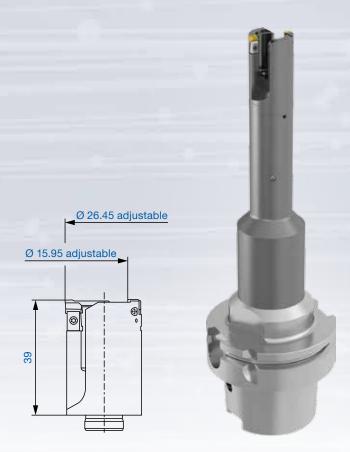
EM Ø 66,6

S

Š

∎ É

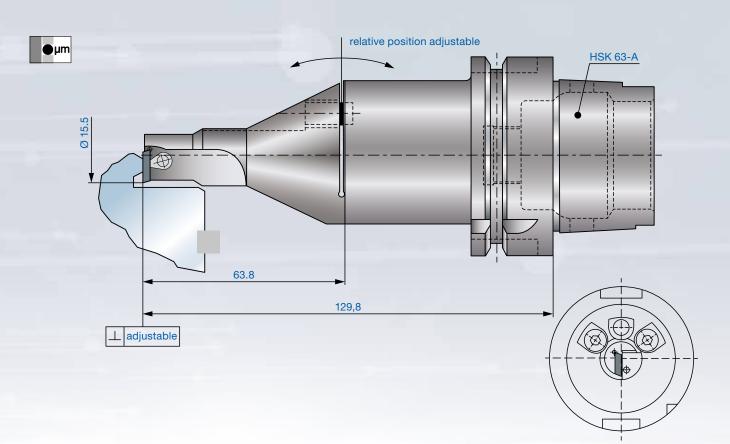
 (\mathcal{D})



Axial grooving

Axial grooving tool with heavy metal shank / Teeth = 2 / Teeth_{eff.} = 1

Replaceable head design


Requirements				
Grooving tool with adjustable inserts				
Solution				
Axial grooving tool with heavy metal shank / Teeth = 2 / Teeth _{eff.} = 1				
Replaceable head desig	jn			
Cutting data				
Material		(DIN) ■ 20MnCr5		
Cutting grade		carbide coated		
Cutting speed	m/min	(Ø21,2) 121		
Feed rate per tooth	mm	0.08		
Cutting depth	mm	into solid		
Result				
Good chip control thanks to cutting division				
Excellent surface finish				

Ð

Customer benefits High process reliability

Sealing surface, hard machining

Fine boring tool / Teeth = 1

Requirements

Requirements		
Hard machining of the sealing s	urface	
Angular position of inserts on to	ol holder adjustable	
Solution		
Fine boring tool / Teeth = 1		
Cutting data		
Material	60-62 HRC	(DIN) 20MnCr5
Cutting grade		CBN
Cutting speed	m/min	195
Feed rate per tooth	mm	0.025
Cutting depth	mm	0.2
Result		
Excellent surface finish quality		
Very good tool life		
Regrindable CBN inserts		

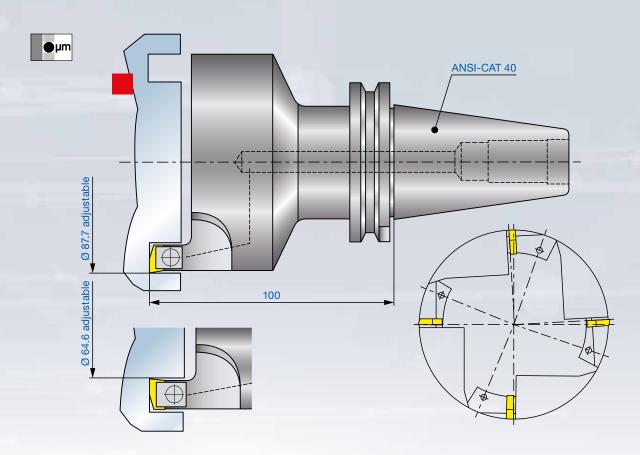
Customer benefits Low costs per component

H Injection pump Cam cavity

Multi-step fine boring tool / Teeth = 7 / Teeth_{eff.} = 1 / $(\emptyset \, 66.5 + \emptyset \, 63.3)$ Teeth = 2 μm HSK 63-A µm Ø 63.3 +0.1 adjustable Ø 47.1 H8 adjustable Ø 13.7 H7 adjustable Ø 19.1 H9 adjustable Ø 66.5 h8 adjustable \oplus ⊕ ŧ ١ \oplus 3° 18 85 ±0.02 101.3 ±0.02 adjustable 152.5 ±0.02

Requirements

Combination tool for 5 r	machining ste	ps
Solution		
Multi-step fine boring to	ool / Teeth $= 7$	$/ \text{Teeth}_{eff.} = 1 / (\emptyset 66.5 + \emptyset 63.3) \text{Teeth} = 2$
Cutting data		
Material		(DIN) ■ 20MnCr5
Cutting grade		carbide coated
Cutting speed	m/min	(Ø13.7) 37 (Ø66.5) 180
Feed rate per tooth	mm	(Ø13.7) 0.15 (Ø66.5) 0.075
Cutting depth	mm	(Ø13.7) 0.5 (Ø66.5) 0.5-1.5
Result		


Inserts separately adjustable and replaceable

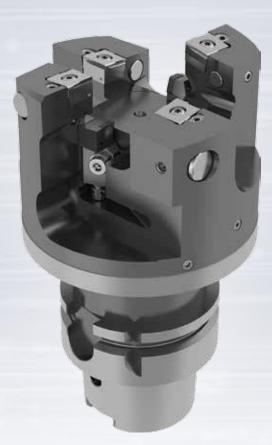
Customer benefits Low costs per component

Oil pump H Rotor clearance

Fine boring/grooving tool / Teeth = 2 + 2

Requirements		
Inside and outside diam	eter adjustabl	le
Solution		
Fine boring/grooving to	ol / Teeth = $2 \cdot$	+ 2
Cutting data		
Material		(DIN) 🗖 GG25
Cutting grade		carbide coated
Cutting speed	m/min	220
Feed rate per tooth	mm	0.1
Cutting depth	mm	~ 12, entire cutting width
Result		

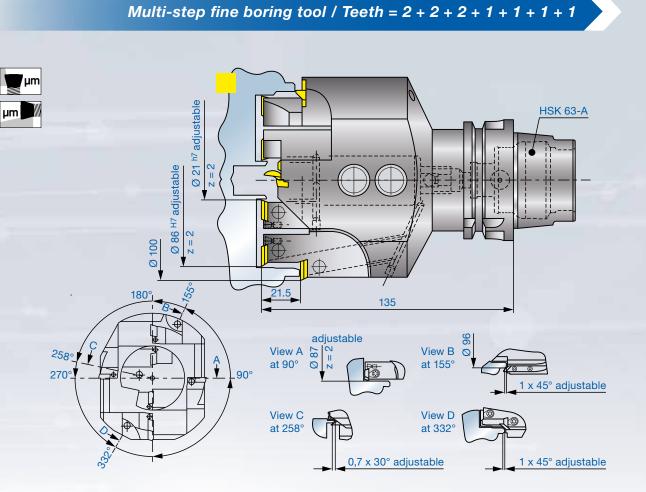
Very good tool life


Customer benefits

Low costs per component High process reliability Simple tool handling

Pre-machining connecting flange

OD turning tool, stationary tool (turning machine) / Teeth = 2 + 2 + 1 + 1


Requirements		
Reduction of cycle time	S	
Solution		
OD turning tool, stationa	ary tool (turnin	ng machine) / Teeth _{eff.} = 2 / 1
Cutting data		
Material		(DIN) Z17CrNi16/1.4057
Cutting grade		carbide coated
Cutting speed	m/min	200
Feed rate per tooth	mm	0.125
Cutting depth	mm	4
Result		

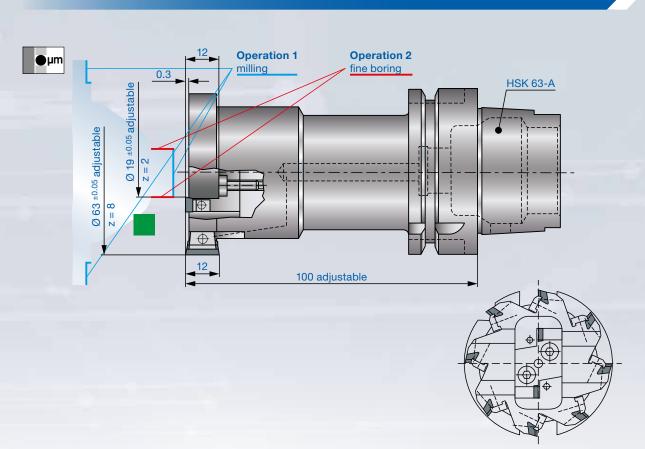
Faster machining with consistent quality

Customer benefits Reduced cycle times up to 66 %

Stainless steel pump

Requirements			
Combination tool, all dia	ameters adjus	able	
Solution			
Multi-step fine boring to	ool / Teeth = 2	+ 2 + 2 + 1 + 1 + 1 + 1	
Cutting data			
Material		(DIN) – X2CrNi19-11	
Cutting grade		carbide coated	
Cutting speed	m/min	25-100	
Feed rate per tooth	mm	0.025	
Cutting depth	mm	0.4	
Result			

Flexible tool design



Customer benefits

Short machining time Low costs per component

Various automotive components

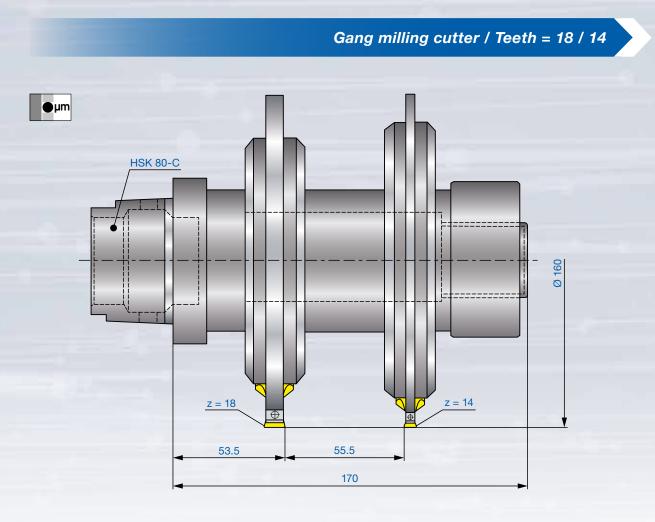
Starter housing

Milling and overturning tool / Teeth = 8 (milling), 2 (fine boring)

Requirements

Milling and overturning	of a stud with	one tool	
Face runout of the millir	ng cutter and o	diameter of the	fine boring tool are adjustable
Solution			
Milling and overturning	tool / Teeth =	8 (milling), 2 (fin	e boring)
Cutting data			
Material		(DIN) 🔳 GDAI	Si12
Cutting grade		PCD	
		milling	fine boring
Cutting speed	m/min	(Ø63) 1.800	(Ø19) 543
Feed rate per tooth	mm	0.12	0.12
Cutting depth	mm	0.8	0.8
Result			

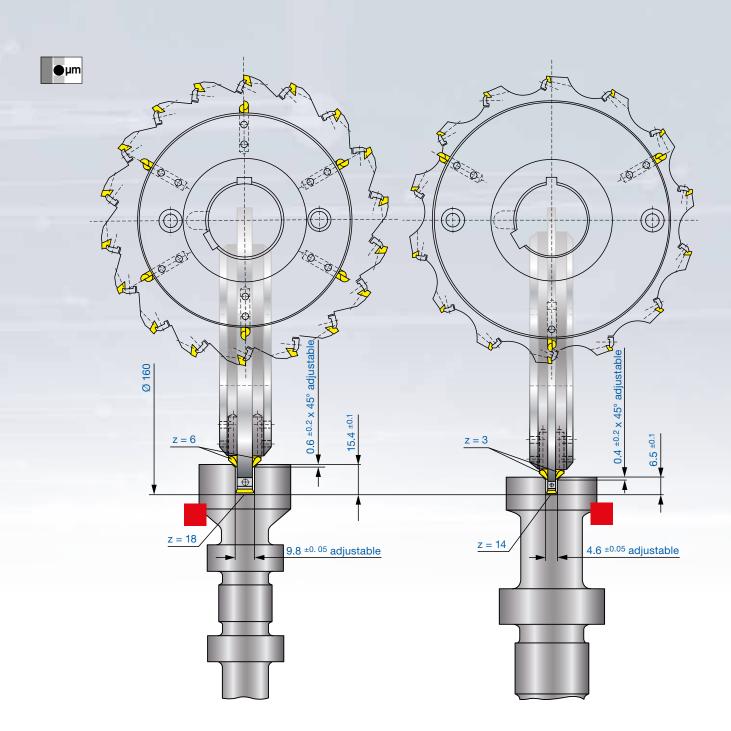
Reduced machining time thanks to combination tool



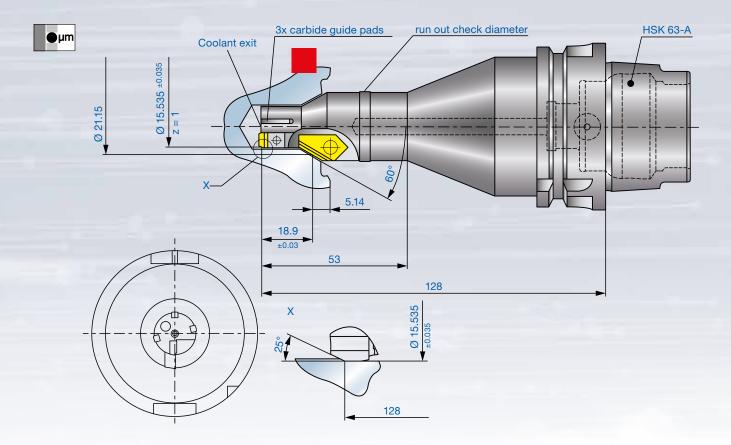
Customer benefits Low costs per component

Increased productivity

Drive slot



Requirements Machining of two types	of camebafte	with only one tool
	of carrisnants	
Solution		
Gang milling cutter / Tee	eth = 18/14	
Cutting data		
Material		(DIN) ■ GGG40
Cutting grade		carbide coated
Cutting speed	m/min	80
Feed rate per tooth	mm	0.06
Cutting depth	mm	Teeth = 18/16 Teeth = 14/7
Result		
Reduced non-productiv	e times	
Reduced machining sta	tione	


Customer benefits Increased productivity

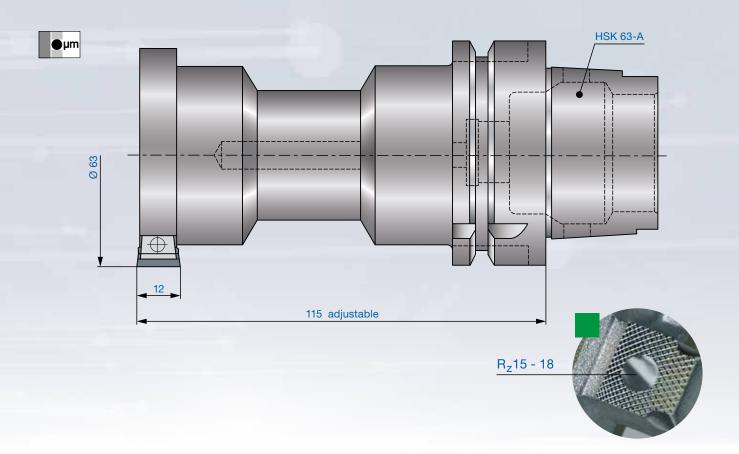
H Crankshaft

Fine boring and chamfer tool / Teeth = 1 + 1

Requirements

Fine boring tool with ca	rbide guide pa	ads for machining of the flange bore
Solution		
Fine boring and chamfe	er tool / Teeth =	= 1 + 1
Cutting data		
Material		(DIN) ■ GGG60
Cutting grade		carbide coated
Cutting speed	m/min	80
Feed rate per tooth	mm	0.12
Cutting depth	mm	0.15
Result		

High dimensional accuracy thanks to tool concept with guide pads


0

Customer benefits Higher process reliability

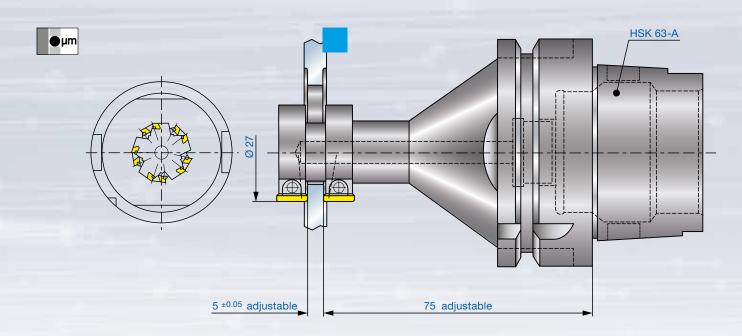
Special face milling cutter / Teeth = 8

Equipped with standard PCD inserts

Requirements

Milling of the sealing su	rface with a de	efined surface roughness
All inserts axially adjusta	able	
Solution		
Special face milling cutt	ter / Teeth = 8	
Equipped with standard	I PCD inserts	
Cutting data		
Material		(DIN) ■ AISi12Cu
Cutting grade		PCD
Cutting speed	m/min	3560
Feed rate per tooth	mm	0.16
Result		
High machining speed t	hanks to spec	zial insert geometry

Constant wear - all inserts set to same height


Customer benefits Low costs per component Increased productivity

H Gearshift fork

Gang milling cutter (monoblock) / Teeth = 10 / Teeth_{eff.} = 5

Inserts interchangeable among each other, thus both cutting edges of the inserts can be used

All inserts adjustable (dim. 5 mm)

Requirements

noquironnon				
Very unstable compone	nt, requires lo	w cutting forces of the tool		
Machining of the two rir	ng surfaces in	one cut		
Solution				
Gang milling cutter (mo	noblock) / Tee	th = 10 / Teeth _{eff.} = 5		
Inserts interchangeable	among each o	other thus both cutting edges of the inserts can be used		
All inserts adjustable (di	im. 5 mm)			
Cutting data				
Material		(DIN) C35-520 N/mm ²		
Cutting grade		carbide coated		
Cutting speed	m/min	120		
Feed rate per tooth	mm	0.1		
Cutting depth	Cutting depth mm both sides 0.6			
Result				
Short machining time				
Inserts usable on both s	sides			

0

Customer benefits Low costs per component

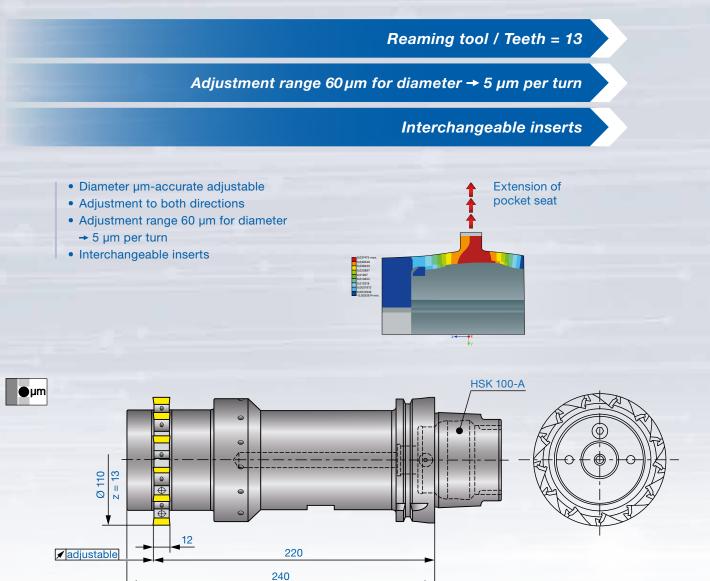
Gang milling cutter

Large radii can be achieved

Tangential inserts with PCD cutting edges

Requirements

Milling connection taps	in a single ste	p
Solution		
Gang milling cutter for o	double-sided r	milling of two taps
Cutting data		
Material		AlSi9
Cutting grade		PCD
Cutting speed	m/min	1,250
Feed rate per tooth	mm	0.1
Cutting depth	mm	3-12!
Result		


Process reliable machining of combined work steps

Customer benefit

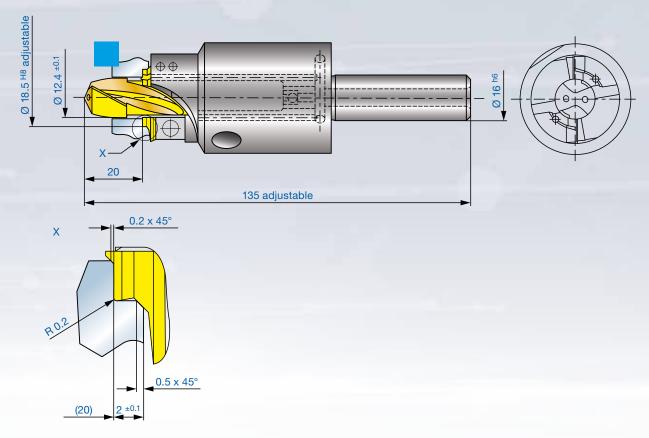
Long tool life thanks to PCD-coated cutting inserts Short machining times as a result of multiple operations being combined in one tool

H Steering housing

Requirements

Diameter µm-accurate a	adjustable in b	ooth directions	
Solution			
Reaming tool / Teeth =	13		
Adjustment range 60 µr	n for diameter	·→ 5μm per turn	
Freely selectable and ex	changeable ir	serts	
Cutting data			
Material		(DIN) ■ GGG50	
Cutting grade		carbide coated	
Cutting speed	m/min	160	
Feed rate per tooth	mm	0.2	
Cutting depth	mm	0.25	
Result			

Reduced non-productive time thanks to adjustment options on the machine



Customer benefits High process reliability High productivity

Drive flange

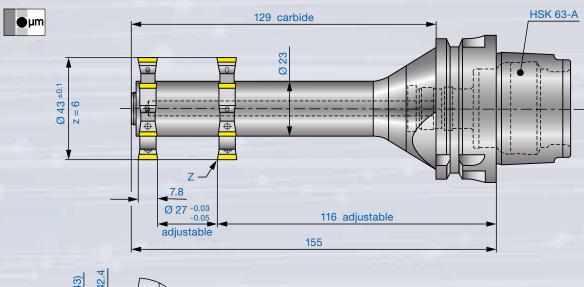
Combination tool for the complete component contour

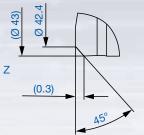
Ø 18,5^{H8} adjustable by means of eccentric pin adjustment

Requirements

Combination tool for the	e complete co	mponent contour		
Solution				
Drilling and fine boring t	tool / Teeth = :	2		
Ø18,5 ^{H8} adjustable by	means of ecc	entric pin adjustm	ent	
Cutting data				
Material		(DIN) 🗖 Ck45		
Cutting grade		carbide coated		
		drilling	fine boring	
Cutting speed	m/min	71	141	
Feed rate per tooth	mm	0.12	0.08	
Cutting depth	mm	into solid	3	
Result				

Reduction of machining time thanks to combination tool

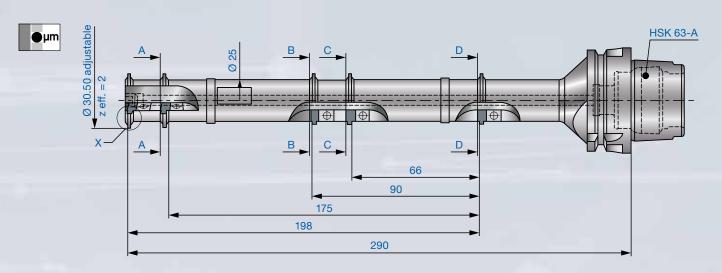


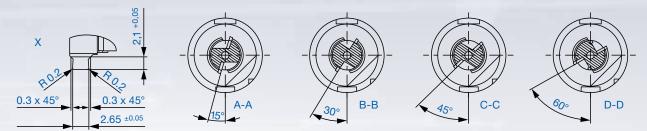

Customer benefits

Low costs per component Increased productivity

H Balance shaft housing

Gang milling cutter / Teeth = 6 + 6


Requirements		
Machining of both ring	surfaces in on	e cut
Solution		
All inserts adjustable (d	im. 5 mm)	
Cutting data		
Material		(DIN) 🗖 GG25
Cutting grade		carbide coated
Cutting speed	m/min	270
Feed rate per tooth	mm	0.15
Cutting depth	mm	0.2
Result		
Short machining time		
Inserts usable on both s	sides	

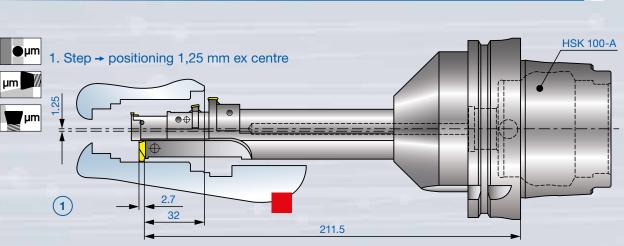

0

Customer benefits Low costs per component

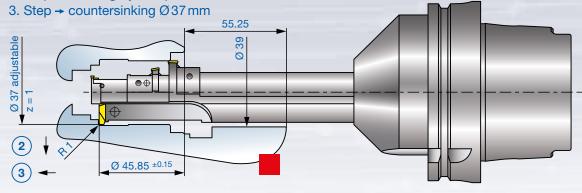
Balance shaft housing

Circular milling cutter / Teeth = 2 + 2 + 2 + 2 + 2

Requirements		
Circular milling cutter for	r the machinir	ng of grooves
Solution		
Circular milling cutter / T	Teeth = 2 + 2 +	+ 2 + 2 + 2
Cutting data		
Material		(DIN) 🗖 AI
Cutting grade		PCD
Cutting speed	m/min	490
Feed rate per tooth	mm	0.1
Cutting depth	mm	0.5-1.0
Result		


Tool life tripled

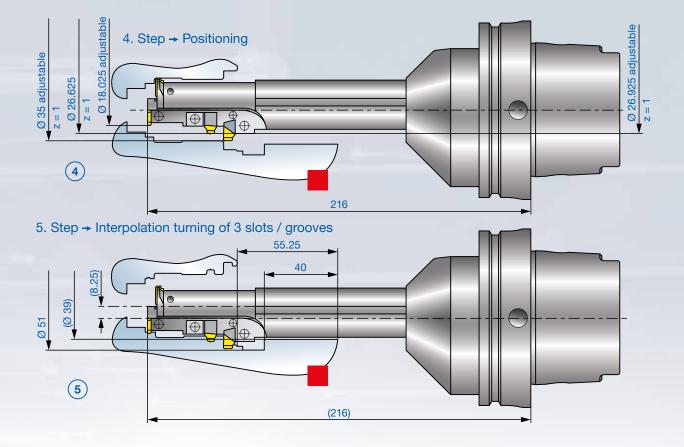
Customer benefits


Reduced tooling costs Reduced handling costs

H Brake caliper

Interpolation turning tool / Teeth = 4 + 1

2. Step - entering by interpolation to nominal diameter


Requirements				
Combination tool for Ø	37 mm plus se	al grooves		
Solution				
Interpolation turning too	ol / Teeth = 4 +	1		
Cutting data				
Material		(DIN) 🗖 GGG45		
Cutting grade		carbide coated		
Cutting speed	m/min	70		
Feed rate per tooth	mm	0.12		
Cutting depth	mm	0.75		
Result				
Reduction of machining	time thanks t	o combination tool		

Long tool life thanks to constant cut (interpolation turning process)

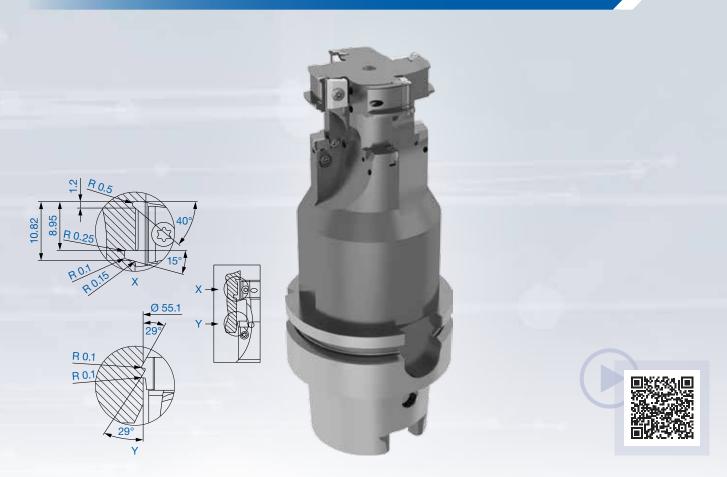
Customer benefits Low costs per component High productivity

Brake caliper

Drilling and countersinking tool with interchangeable inserts

Requirements		
Machining of the compl	ete workpiece	e contour with one tool
Solution		
Step tool with interchan	geable inserts	3
Cutting data		
Material		(DIN) ■ GGG40
Cutting grade		carbide coated
Cutting speed	m/min	52 (Ø27.7)
Feed rate per tooth	mm	0.28
Cutting depth	mm	into solid
Result		

Tool life tripled



Customer benefits

Reduced tooling costs Reduced handling costs

Circular milling cutter with form inserts / Teeth = 4 + 4

Requirements		
Grouping of several gro	ove machining	g operations
Solution		
Circular milling cutters v	with form inse	rts / Teeth = 4 + 4
Cutting data		
Material		(DIN) ■ GD-AlSi9Cu3
Cutting grade		PCD
Cutting speed	m/min	1,060
Feed rate per tooth	mm	0.13
Result		

High positional accuracy of the grooves and edge outlines in relation to each other Several grooves can be produced with one tool

Customer benefits High process reliability High productivity

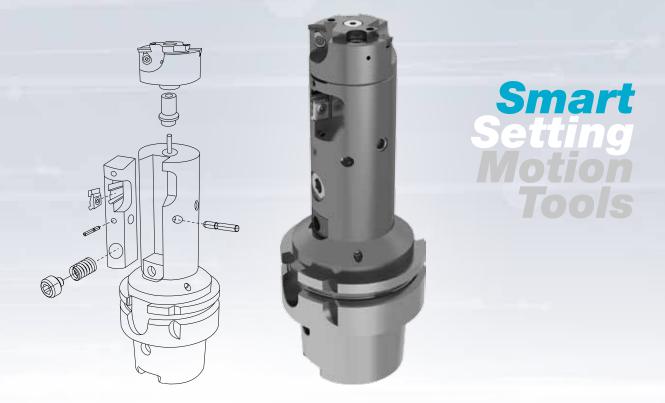
Multi-fluted OD tool / Teeth = 3 + 1

Coolant outlet at front for 1-channel MQL system

HOLLFELDER GÜHRING

Requirements			
Reduction of costs per	r component		
Solution			
Multi-fluted OD tool / T	Teeth = 3 + 1		
Cutting data			
Material		(DIN) C56E2	
Cutting grade		carbide coated	
Cutting speed	m/min	160	
Feed rate per tooth	mm	0,2	
Cutting depth	mm	6mm in Ø	
Result			
Increased tool life by 6	0 %		
Low cutting forces			
Very good chip control			

Customer benefits


Significant reduced costs per component

Connecting rod

Automatically adjustable tool / Teeth = 2 + 1

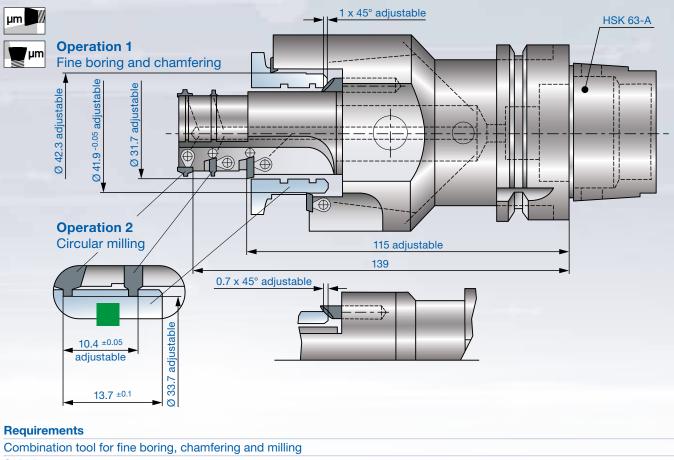
SMART SETTING MOTION TOOLS concept

Machining diameter can be set µm-accurately larger and smaller by means of a central adjusting screw

Requirements				
Reduction of non-produ	ictive times			
Solution				
Automatically adjustable	e tool / Teeth :	= 2 + 1		
SMART SETTING MOTI	ON TOOLS co	oncept		
Machining diameter car	n be set µm-ao	ccurately larger and smaller by means of a central adjusting screw		
Cutting data				
Material (DIN) 36MnVS4		(DIN) ■ 36MnVS4		
Cutting grade	Cutting grade carbide coated			
Cutting speed	ed m/min 138			
Feed rate per tooth	mm	0.1/0.2		
Result				
High tool life quantity (it	is re-adjusted	d approx. 2x per tool life)		

Easy handling by readjusting the machining diameter directly in the machine spindle

Customer benefits High productivity


General engineering

Guide bushing

Fine boring, chamfering and circular milling tool Teeth = 8 / Teeth_{eff.} = 1 per Ø (fine boring) / Teeth = 8 / eff. 2 per Ø (milling)

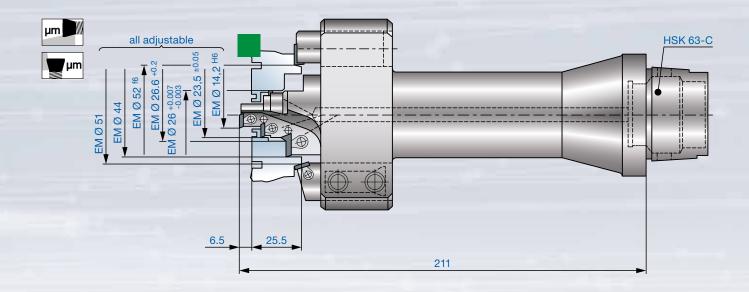
Middle part exchangeable for different types of components

All inserts adjustable

Combination tool for fin	e boring, char	mfering and milling	
Solution			
Fine boring, chamfering	and circular r	milling tool / Teeth = 8 / Teeth _{eff.} = 1 je Ø (fine boring) / Teeth = 8 / Teeth _{eff.} = 2 je Ø (milling)	
Middle part exchangeat	ole for differen	t types of components	
All inserts adjustable			
Cutting data			
Material		(DIN) ■ GD-AlSi9Cu3	
Cutting grade		PCD	
Cutting speed	m/min	(Ø31.7) 750 (Ø42.3) 1000	
Feed rate per tooth	mm	(milling) 0.065 0.13	
Cutting depth	mm	2-3	
Result			
Short machining time			
High dimensional accur	acy		

High dimensional accuracy

Customer benefits


H Gearbox case

for angle grinders

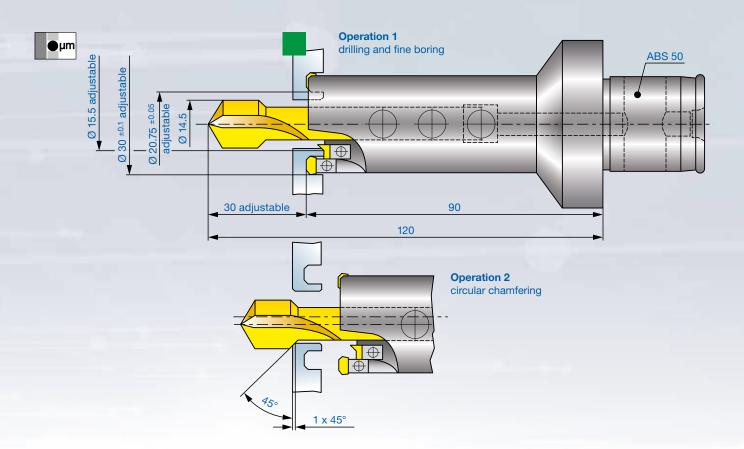
Fine boring, chamfering and face tool / Teeth = 6 eff. 1 per Ø

All inserts adjustable

Exchangeable cartridges for different types of housings

Requirements			
Combination tool for 6 r	machining ste	ps	
Solution			
Fine boring, chamfering	and face tool	/ Teeth = 6 eff. 1 per \emptyset	
All inserts adjustable			
Exchangeable cartridge	s for different	types of housings	
Cutting data			
Material		(DIN) ■ GD-AlSi9Cu3	
Cutting grade		PCD	
Cutting speed	m/min	800	
Feed rate per tooth	mm	-0.15	
Cutting depth mm 0.5		0.5	
Result			
Short machining time			
High dimensional accur	acv		

High dimensional accuracy


Customer benefits

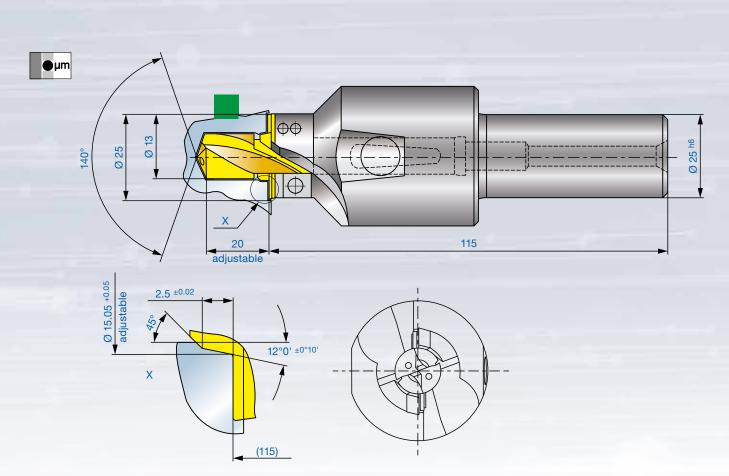
for hand drills

Drilling and fine boring tool

Inserts adjustable

Requirements				
Combination tool for 5 n	nachining step	os		
Diameter of the chamfer	and the face	groove adjustable		
Solution				
Drilling and fine boring to	ool			
Inserts adjustable				
Cutting data				
Material		(DIN) AISi12		
Cutting grade		carbide coated		
		drilling and chamfering	fine boring and chamfering	
Cutting speed	m/min	(Ø14.5) 160	(Ø30) 331	
Feed rate per tooth	mm	0.15	0.07	
Cutting depth	mm	7.25	4.9	
Result				
Short machining time				

High dimensional accuracy



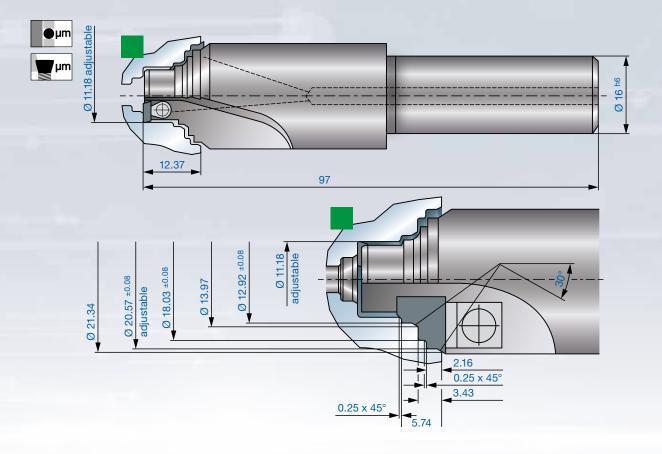
Customer benefits

H Hydraulic industry

Hydraulic component

Drilling and fine boring tool

Requirements Drilling, chamfering and fine boring in one tool **Solution** Drilling and fine boring tool **Cutting data** (DIN) AI Material Cutting grade K10 fine boring drilling 374 Cutting speed m/min 374 Feed rate per tooth 0.38 0.09 mm Cutting depth into solid 1.3 mm Result Short machining time High dimensional accuracy Solid carbide drill regrindable for several times



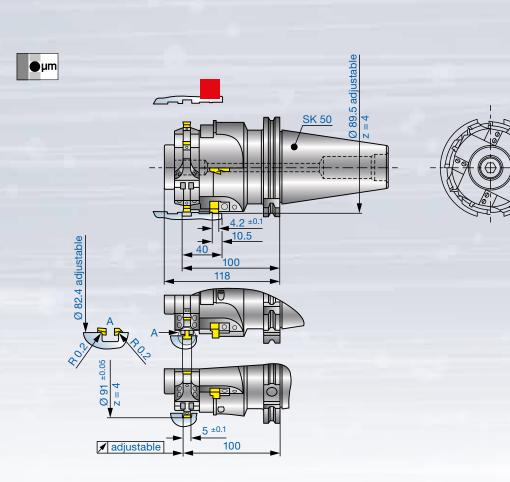
Customer benefits

Fine boring and chamfering tool with indexable inserts

PCD-form inserts with 5 steps, all diameters adjustable

Requirements

Multi-step fine boring to	ol for hydrauli	c connection	
Solution			
Fine boring and chamfe	ring tool with	ndexable inserts	
PCD-form inserts with 5	steps, all dia	neters adjustable	
Cutting data			
Material (DIN)		(DIN) ■ GDAISi9	
Cutting grade		PCD	
Cutting speed	m/min	(Ø21.34) 700	
Feed rate per tooth	mm	0.1	
Cutting depth	mm	-5	
Result			


Simple correction of diameters by means of taper screw or eccentric pin adjustment Inserts separately replaceable

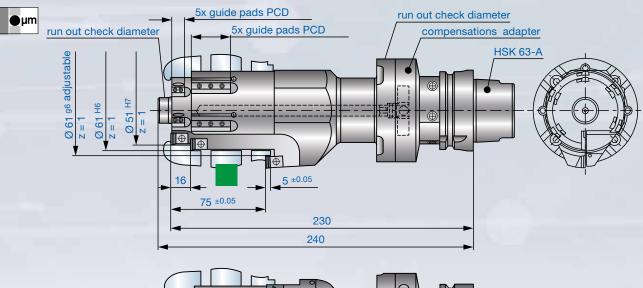
Customer benefits Low costs per component H Brake component

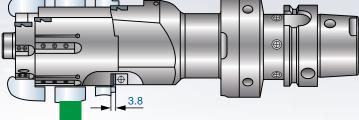
for wind mill

Circular milling cutter / Teeth = 16 / Teeth_{eff.} = 4

Requirements

Multi-step circular millin	g cutter for m	achining grooves
Solution		
Circular milling cutter /	Teeth = 16 / Te	eeth _{eff.} = 4
Cutting data		
Material		(DIN) 📕 GGG40
Cutting grade		carbide coated
Cutting speed	m/min	95
Feed rate per tooth	mm	0.11
Cutting depth	mm	4
Result		
Short machining time		
High dimensional accur	acy	


Customer benefits

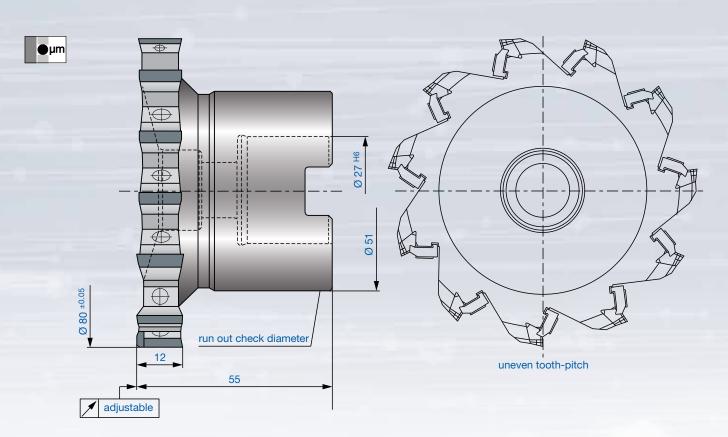


Housing

Stepped fine boring tool with clamped PCD guide pads / Teeth = 4 / Teeth_{eff.} = 1

All inserts adjustable

Requirements		
Multi-step fine boring to	ool	
Solution		
Stepped fine boring too	l with clamped	d PCD guide pads / Teeth = 4 / Teeth _{eff.} = 1
All inserts adjustable		
Cutting data		
Material		(DIN) ■ AISi11Cu2(Fe)
Cutting grade		PCD
Cutting speed	m/min	600
Feed rate per tooth	mm	0.1
Cutting depth	mm	0.2
Result		
Excellent surface finish		
Simple tool handling		


Customer benefits

Higher process reliability Low costs for replacing the PCD guide pads, if necessary

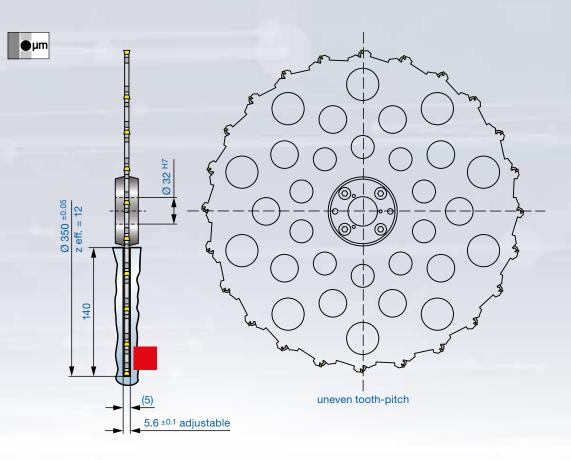
H Compressor housing

Put on milling cutter Ø80mm / Teeth = 8 + 3

Mixed assembly: semi finish inserts (Teeth = 8) and wiper inserts (Teeth = 3)

Requirements		
Surface finish R _z max. 2	:0μm	
Flatness 0.05 mm		
Solution		
Put on milling cutter Ø8	0 mm / Teeth	= 8 + 3
Mixed assembly: semi f	inish inserts (Feeth = 8) and wiper inserts (Teeth = 3)
Cutting data		
Material		(DIN) ■ GG25
Cutting grade		CBN
Cutting speed	m/min	1,200
Feed rate per tooth	mm	0.140
Cutting depth	mm	0.10
Result		

Increased tool life by 300-400 %


Customer benefits

Dramatically reduced costs per component

Side milling cutter Ø350mm / Teeth = 12 + 12

Width 5.6mm adjustable

Requirements		
Milling of the rotor groove	s	
Solution		
Side milling cutter Ø350 n	nm / Teeth =	: 12 + 12
Width 5.6 mm adjustable		
Cutting data		
Material		(DIN) ■ GGG50
Cutting grade		carbide coated
Cutting speed	m/min	80
Feed rate per tooth	mm	0.05

Result

Finish machining of slots in one cut

Therefore dramatic shortening of processing time compared to the grinding process

140

Cutting depth

Customer benefits

Dramatically reduced costs per component

mm

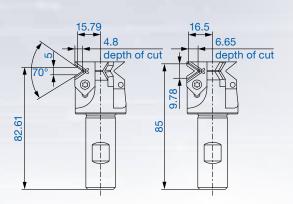
H Hydraulic industry

Connection holes valve block

Multi-step fine boring tool with adjustable inserts / Teeth = 8 / Teeth_{eff.} = 2

Requirements			
Tool for hydraulic conne	ection		
All diameters adjustable	Э		
Solution			
Multi-step fine boring to	ool with adjust	able inserts / Teeth = 8 / Teeth _{eff.}	= 2
Cutting data			
Material		(DIN) 🗖 GGG50	
Cutting grade		carbide coated	
Cutting speed	m/min	(Ø47) 180	
Feed rate per tooth	mm	(Ø47/Ø41) 0.1	
Cutting depth	mm	-5	
Result			
Short machining time			
Stable machining proce	224		

Customer benefits Low costs per component

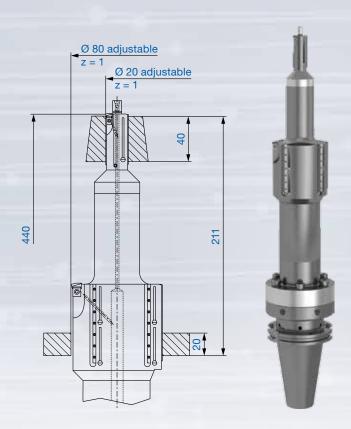


Guide rail

Milling tool with fixed insert seat / Teeth = 3

Machining of different sizes with one holder and different interchangeable inserts

Requirements			
Geometric shape accur	acy		
Mixed machining (Steel	unhardened /	hardened)	
Faster machining			
Solution			
Milling tool with fixed in	sert seat / Tee	th = 3	
Cutting data			
Material		(DIN) Toolox 33	
Cutting grade		CBN/carbide	
Cutting speed	m/min	CBN 250/carbide 140	
Feed rate per tooth	mm	CBN 0.03/carbide 0.03	
Cutting depth	mm	4.8 resp. 6.65	
Result			
Higher surface finish qu	ality		
Reduced tooling costs			



Customer benefits

Cycle time reduction with higher surface quality Only one tool required for different workpiece geometries Reduced tooling costs

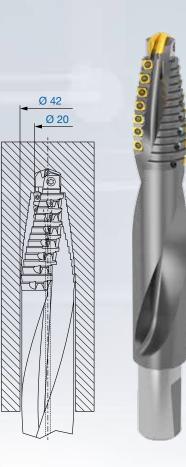
H Gearbox case

Countersinking tool with guide pads / Teeth = 1 + 1

Requirements

nequiremento		
Manufacturing of fitting	diameters	
High surface finish qual	ity	
Solution		
Countersinking tool with	n guide pads /	' Teeth = 1 + 1
Cutting data		
Material		(DIN) 🗖 GG25
Cutting grade		carbide coated
Cutting speed	m/min	88
Feed rate per tooth	mm	0.075
Cutting depth	mm	0.2
Result		
Very good coaxiality des	spite the long	distance to be bridged

Diameter can be set with micrometre precision



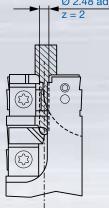
Customer benefits

Reduction of the number of tools Long tool life

Drilling and countersinking tool (HT 800 + 14 steps) / Teeth = 16

Requirements		
Increasing the process r	eliability	
Solution		
Drilling and countersinki	ng tool (HT 80	00 + 14 steps) / Teeth = 16
Cutting data		
Material		(DIN) 🗖 GGG40
Cutting grade		carbide
Cutting speed	m/min	120
Feed rate per tooth	mm	0.4
Cutting depth	mm	into solid
Result		

Faster machining time



Customer benefits High process reliability Longer tool life

Fine boring tool with adjustable form inserts / Teeth = 2 + 1

Requirements

Alternative solution to a	ground carbi	de tool
Solution		
Fine boring tool with ad	ljustable form	inserts / Teeth = 2 + 1
Cutting data		
Material		(DIN) ■ CuZn39Pb3R500
Cutting grade		carbide uncoated
Cutting speed	m/min	76
Feed rate per tooth	mm	0.065
Cutting depth	mm	into solid
Result		
Tool life: 1,000,000 plug	g contacts	

µm-accurate adjustability of diameters

Customer benefits

No regrinding of the entire tool necessary Reduced storage costs

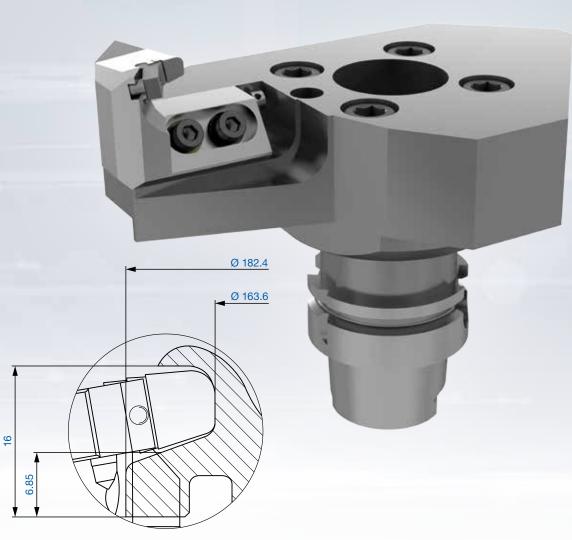
Ultrasonic water meter

Pre- and finish-machining

Requirements		
Reduction of machining	ı time	
Solution		
GA200 Vario special sol	lution (roughin	g/finishing combination) / Teeth = 1 + 1
Cutting data		
Material		(DIN) ■ CuZn35Pb2AI
Cutting grade		carbide/PCD
Cutting speed	m/min	300
Feed rate per tooth	mm	0.06
Cutting depth	mm	4
Result		

Reduction of required tools from 2 to 1

Customer benefits


Cycle time reduction machining with consistent quality Reduced tooling costs

Turbocharger housing

8

V-contour

Interpolation turning tool / Teeth = 1

Requirements

Machining of a V-conto	ur despite limi	ited space conditions
Solution		
Interpolation turning too	ol / Teeth = 1	
Cutting data		
Material		(DIN) CX40NiCrSiNb38-19
Cutting grade		carbide coated
Cutting speed	m/min	100
Feed rate per tooth	mm	0.1
Result		
Very short machining tir	ne	
Flexible and stable tool	concept with	cartridge
Long tool life		

Customer benefits Low costs per component

Pre-machining

Stepped countersinking tool

Various inserts adjustable

Requirements

Several machining steps	s in one tool	
Solution		
Stepped countersinking	tool	
Various inserts adjustab	le	
Cutting data		
Material		(DIN) GX40NiCrSiNb38-19
Cutting grade		carbide coated
Cutting speed	m/min	95
Feed rate per tooth	mm	0.1
Result		
Very short machining tir	ne thanks to r	naximum possible number of teeth
Thanks to the division o	f the chip spa	ices, it is possible
to combine coveral mag	bining stops	

to combine several machining steps

Customer benefits

Lower tool costs by using ISO inserts Reduced cycle times

Finish-machining

Fine boring tool / Teeth = 1 + 1

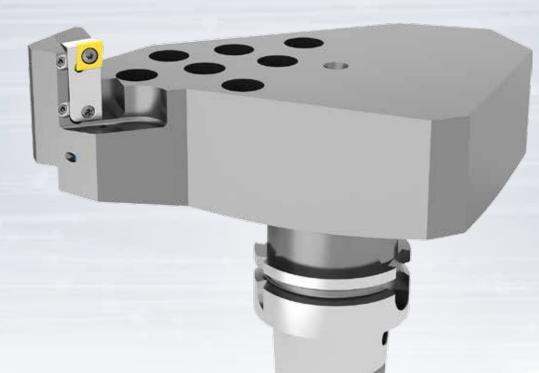
Adjustment of the diameter by fine adjustment

Smart
Setting
Motion

Requirements	

nequirements		
Step tool for finishing o	peration	
Solution		
Countersinking tool / Te	eth = 1 + 1	
Adjustment of the diam	eter by means	s of thread wedge adjustment
Cutting data		
Material		(DIN) GX40NiCrSiNb38-19
Cutting grade		carbide coated
Cutting speed	m/min	120
Feed rate per tooth	mm	0.075
Result		

Short machining time


Customer benefits

Lower tool costs by using ISO inserts μ m accurate adjustment directly at the spindle \rightarrow low machine downtime

Finish-machining

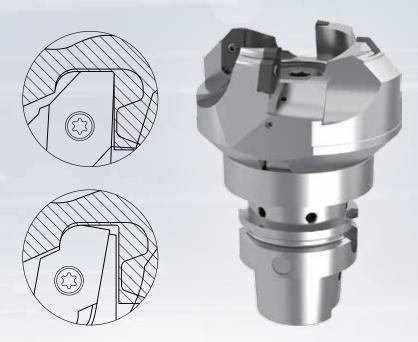
Countersinking and interpolation tool in one Ø 182.4 mm → Finishing

> Plane surface from 182.4 to 155.698 mm → Interpolation process

Requirements Different machining processes in one tool **Solution** Countersinking and interpolation tool in one Ø 182.4 mm → Finishing Plane surface from 182.4 to 155.698 mm → Interpolation process **Cutting data** (DIN) GX40NiCrSiNb38-19 Material Cutting grade carbide coated Cutting speed 100 m/min Feed rate per tooth mm 0.1 Result 2 machining processes in one tool

Adjustment of the diameter by means of thread wedge adjustment

Customer benefits


Lower tool costs by using ISO inserts

Pre-machining

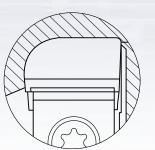
Axial grooving tool / Teeth = 2 + 2

Division of the contour into two different cutting insert geometries

Compact tool concept

Requirements		
Pre-machining of a com	nplex contour	
Solution		
Axial grooving tool / Tee	eth = 2 + 2	
Division of the contour	into two differe	ent cutting insert geometries
Compact tool concept		
Cutting data		
Material		(DIN) GX40NiCrSiNb38-19
Cutting grade		carbide coated
Cutting speed	m/min	110
Feed rate per tooth	mm	0.125
Result		
Observation to and the second line of		

Simple tool handling


Customer benefits

Low costs per component thanks to multi-fluted insert

Finish-machining

Axial grooving tool with profile insert / Teeth = 1

Requirements		
Finishing of a complex of	contour	
Solution		
Axial grooving tool with	profile insert /	/ Teeth = 1
Cutting data		
Material		(DIN) GX40NiCrSiNb38-19
Cutting grade		carbide coated
Cutting speed	m/min	100
Feed rate per tooth	mm	0.1
Result		
Very good surface quali	ty and dimens	sional accuracy

µm-accurate adjustability of diameter

Customer benefits Low costs per component

Pre-machining

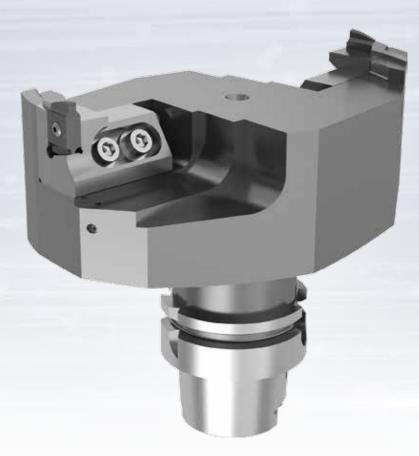
Axial grooving tool, adjustable diameter / Teeth = 1 + 1

Division of the contour on two different inserts

Compact tool concept

Requirements		
Pre-machining of a comp	olex contour	
Solution		
Axial grooving tool, adjust	stable diamet	er / Teeth = 1 + 1
Division of the contour or	n two differer	it inserts
Compact tool concept		
Cutting data		
Material		(DIN) GX40NiCrSiNb38-19
Cutting grade		carbide coated
Cutting speed	m/min	95
Feed rate per tooth	mm	0.09
Result		
Simple tool handling		
Inserts µm-accurate adju	istable	

Customer benefits


Low costs per component thanks to long tool life

Pre-machining

Axial grooving tool, adjustable diameter / Teeth = 1 + 1

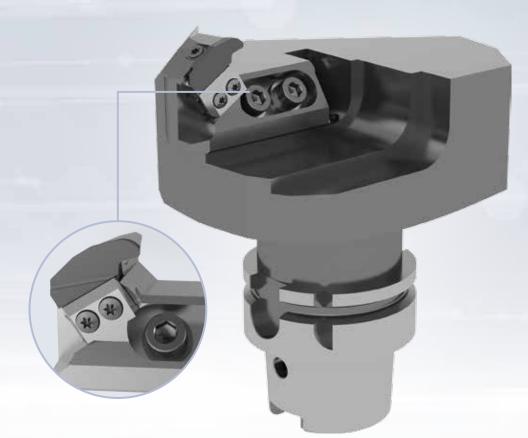
Division of the contour into two different cutting inserts

Compact tool concept with cartridges

Requirements

noquironito		
Pre-machining of a corr	plex contour	
Solution		
Axial grooving tool, adju	ustable diamet	ter / Teeth = 1 + 1
Division of the contour i	into two differe	ent cutting inserts
Compact tool concept	with cartridges	S
Cutting data		
Material		(DIN) CX40NiCrSiNb38-19
Cutting grade		carbide coated
Cutting speed	m/min	110
Feed rate per tooth	mm	0.15
Result		
Cimple teel handling		

Simple tool handling

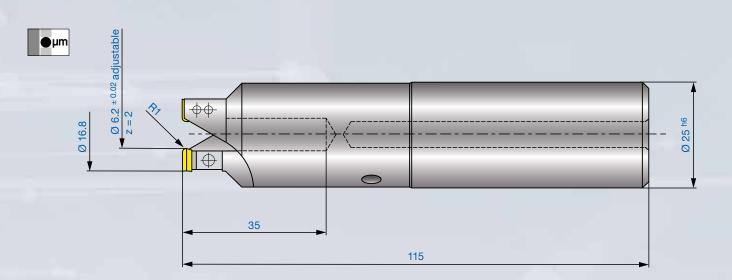

Customer benefits

Low costs per component thanks to multi-edge insert

V-contour

Interpolation turning tool / Teeth = 1

Requirements		
Machining of a V-contor	ur despite limi	ited space conditions
Solution		
Interpolation turning too	ol / Teeth = 1	
Cutting data		
Material		(DIN) diama (DIN)
Cutting grade		carbide coated
Cutting speed	m/min	110
Feed rate per tooth	mm	0.15
Result		
Very short machining tir	ne	
Flexible and stable tool	concept with	cartridge
Long tool life		

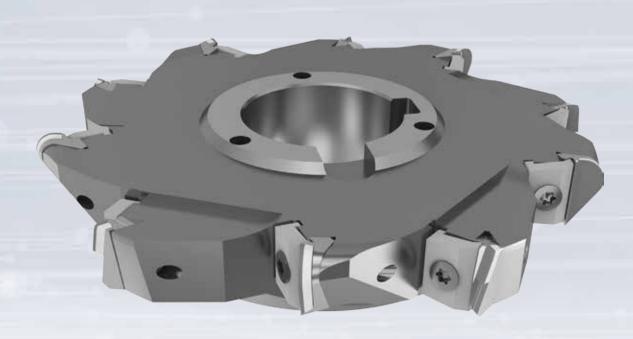


Customer benefits Low costs per component

Aviation technology

Fuel manifold

Axial grooving tool / Teeth = 2



Requirements		
Machining of various ou	itside diamete	rs
with high requirements	for diameter to	plerance and roundness
Reduction of machining	time	
Solution		
Axial grooving tool / Tee	eth = 2	
Cutting data		
Material		(DIN) TIAI6V4
Cutting grade		carbide
Cutting speed	m/min	48
Feed rate per tooth	mm	0.03
Feed rate per tooth	mm	0.25
Result		
Significantly shorter ma	chining time d	lue to double fluted tool
Uniform distribution of a	cutting forces	compared to a single-fluted tool -
resulting in very high rou	undness and u	uniform wall thickness

Requirements		
Increase in process relia	ability	
Reduction of delamination	ion with so ca	lled mesh material
Solution		
Side milling cutter with	distribution of	cut / Teeth = 10 / Teeth _{eff} = 5
Cutting data		
Material		(DIN) ■ Composite / CFK
Cutting grade		PCD
Cutting speed	m/min	370
Feed rate per tooth	mm	0.08
Cutting width	mm	0
Result		
Increase in tool life que	otitu	

Increase in tool life quantity

Customer benefits

Higher quality, therefore lower costs for re-work

Aircraft components

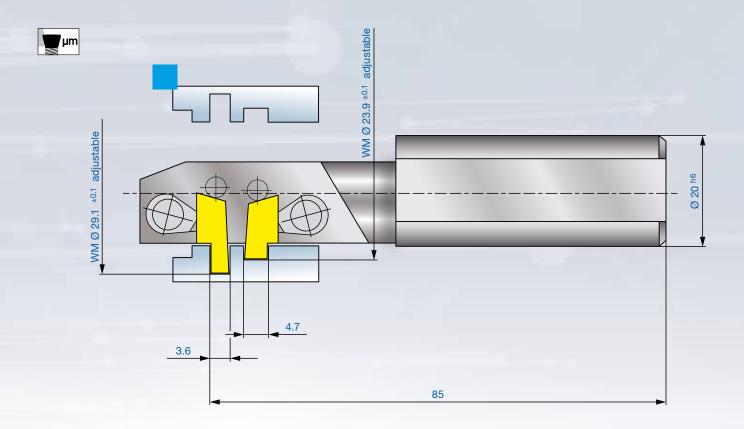
Drilling and countersinking tool with interchangeable inserts / Teeth = 1

Insert diameter µm-accurate adjustable

Requirements		
Machining of rivet holes	;	
Burr-free transition from	holes to char	nfer
Solution		
Drilling and countersink	ing tool with ir	nterchangeable inserts / Teeth = 1
Insert diameter µm-acc	urate adjustab	le
Cutting data		
Material		(DIN) CFK/titanium
Cutting grade		PCD
Cutting speed	m/min	380
Feed rate per tooth	mm	0.11
Cutting depth	mm	into solid
Result		
High quality of chamfer	or transition t	hanks to PCD cutting insert

High concentricity accuracy of the solid carbide drill due to use of hydraulic chuck

Customer benefits


High process reliability Low costs per component

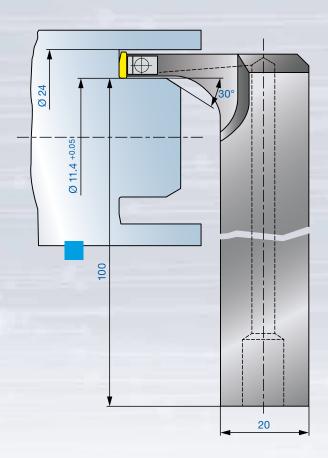
Grooving tool for turning machines / Teeth = 2 / Teeth_{eff.} = 1

Grooving inserts adjustable towards each other

Requirements

noquironnon		
Narrow tolerances of th	e grooves to e	each other
Reduction of machining	j time	
Solution		
Plunging tool for turning	g machines / 1	Feeth = 2 / Teeth _{eff.} = 1
Grooving inserts adjusta	able towards e	each other
Cutting data		
Material		(DIN) Sind D 11 (sintered metal)
Cutting grade		carbide coated
Cutting speed	m/min	(Ø 29.1) 220
Feed rate per tooth	mm	0.1
Cutting depth	mm	~ 4.5
Result		

Reduced machining time thanks to combination tool


Customer benefits

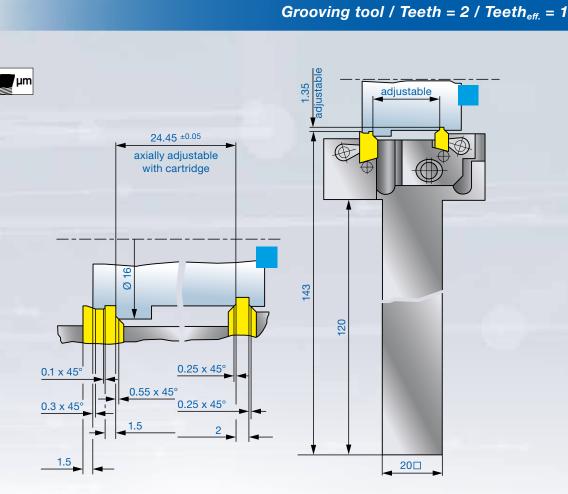
Low costs per component Reduced non-productive times thanks to simple tool handling

Case

Grooving tool / Teeth = 1

Requirements			
Finish machining chamf	fer 30° and Ø1	1.4+0.05	
Solution			
Grooving tool / Teeth =	1		
Cutting data			
Material		(DIN) ■ 9SMn28K	
Cutting grade		carbide coated	
Cutting speed	m/min	(Ø 11.4) 95	
Feed rate per tooth	mm	0.12	
Cutting depth mm		-1	
Result			

High dimensional accuracy thanks to precision-ground cutting insert



Customer benefits

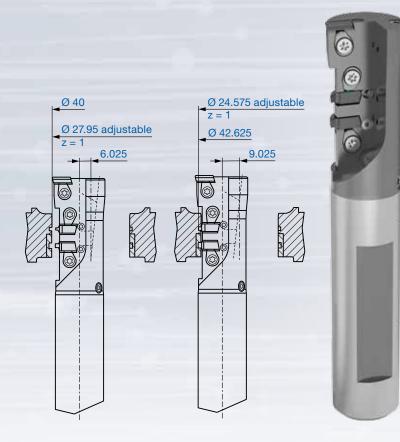
High process reliability thanks to stable insert clamping

Turning tools

Profil shaft

Requirements		
Groove turning - profil r	ecess	
Recesses adjustable to	wards each ot	her
Solution		
Grooving tool / Teeth =	$2 / \text{Teeth}_{\text{eff.}} = 1$	1
Cutting data		
Material		(DIN) ■ 9SMn28K
Cutting grade		carbide coated
Cutting speed	m/min	120
Feed rate per tooth	mm	0.1
Cutting depth mm		2
Result		
Complete mediate suit		

Complete machining with one tool


0

Customer benefits Cycle time reduction

H Turning tools

Bearing bracket

Combi turning tool (finishing/grooving) / Teeth = 3 / Teeth_{eff.} = 1 + 1

Requirements				
Reduction of cycle time)			
Solution				
Combi turning tool (finis	shing/grooving) / Teeth = 3 / Tee	$eth_{eff.} = 1 + 1$	
Cutting data				
Material		(DIN) ■ AISi12Cu1(Fe) EN-AC47100/11SMn30+C1,0715		
Cutting grade		carbide coated/uncoated		
		grooving	finishing	
Cutting speed	m/min	240	320	
Feed rate per tooth	mm	0.12	0.1	
Result				
Reduced mechining tim	200			

Reduced machining times

Customer benefits Saving of tool places on turret

Turning tools

Shaft

Holder for skiving operations / Teeth = 1

Requirements			
Very high surface quality	У		
Reduction of machining	j time		
Solution			
Holder for skiving operation	ations / Teeth :	= 1	
Cutting data			
Material		(DIN) ■ steel	
Cutting grade		carbide coated	
Cutting speed	m/min	225	
Feed rate per tooth	mm	1.5	
Cutting depth	mm	0.4	
Result			
Very fast machining tim	е		
Excellent surface finish	quality		

Customer benefits

Cycle time reduction Up to 10x faster than conventional turning Saving of one work step (grinding)

H Enquiry form

for special tools

Customer		Date	
Contact person		Telephone	
Street		Fax	
Town/post code		E-Mail	
Workpiece		Drawing number	
Material		Hardness/tensile strength	
• _	to solid	Pre cast	Pre bored
	lind hole ontinous cut	 Through hole Interrupted cut 	Highly interrupted cut
0	thers		
Required surface finish	R _a =	R _z =	_ Others
Stock	mm 🗌 In Radius 🔲	In diameter a _p =	a _e =
Fixture	Stable 🗌 Instable 🗌 Very	instable	
Interference	No 🗌 Yes	mm	
Machine MC	Transferline	Turn / milling centre	Boring head D Multi-spindle
Spindle Steep ta	per DIN	Size 🗌 30 🗌 40 🗌 45 🗌] 50
HSK	DIN	Size 32 40 50] 63 🗌 80 🗌 100
Others		Internal coolant 🗌 Y	∕es □ No
max. Rp	m	Power	kW
_ 0	t-hand cutting Left-hand cutting milling cutter Groove/end millir		Rotating
Shank style/Form		Size	
Tool balanced	☐ No ☐ Yes > Balancir	ng grade G	at 1/min
Necessary cutting data	v _c = m/min	f = mm/U	mm/teeth mm/min
Coolant	Internal External Emulsion Oil	Without MQL Dry	
Remarks			

Enquiry form

for HPC special milling cutter

Company name/no. if av	vailable	Contact person	
Street		Town/post code	
Telephone		e-mail address	
Date		Signature	
	Ø D ₂	-	HSK-A
Ø D			HSK
ØD			HSK SK <u>DIN 68971</u> BT
	Width of cut (a₀)		HSK- SK DIN 68971 BT CAT

H Enquiry form

for automatically adjustable tools

Customer _			Date	
Contact person _			Telephone	
Street _			Fax	
Town/post code _			e-mail	
Workpiece _			Drawing number	
Material _			Hardness/tensile strength	
Designation workp	iece / 3D model required!			
Machining	Crankshaft bearing passage	Balance shaft	Cylinder liner	
Required surface f	inish R _a =	R _z =	Others	
Stock	mm 🗌 in radius	in Diameter		
Machine	MC Transferline	Multi-spindle	machining	
Machine manufact	urer			
Machine type				
Spindle	Steep taper DIN	Size		
	HSK DIN			
	Others max. Rpm		With Internal coolant Without internal coolant	
			Power	KW
Retraction of the ir	nserts required (drawbar)?	Yes No	Air 🗌 Emulsion	Mechanical
Hubmechanismus	🗌 Yes 🗌 No			
Lagerung	Intermediate bearing	Counter bearing -	→ drawing required!	
Tool	Right-hand cutting	Left-hand cutting		
Cutting data (curre	ent process) v _c =	m/min f =	mm/U 🗌 mm/tee	eth 🗌 mm/min
Coolant	Emulsion MQ	L 🗌 Air (dry)		
Description of mac	chining strategy (e.g., maching direc	tion? roughing/finishing	?)	

Our innovative tooling systems are used all over the world in many areas in the metal cutting industry. Both the highly precise standard tools which can be used flexibly as well as our customer specific innovative tooling solutions qualify us as a reliable partner in the metal machining industry. Thanks to many years of experience and our specific know-how we will increase your productivity. Ч

Challenge us with your requirements!

HOLLFELDER-GÜHRING CUTTING TOOLS Wertachstraße 27 • 90451 Nürnberg • Germany Telephone + 49 (0) 911 / 64 19 22-0 • Fax + 49 (0) 911 / 64 19 22-10 E-Mail: info@hollfelder-guehring.de • Internet: www.hollfelder-guehring.de